Vol. 118
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-03-22
High-Performance Silicon Nitride Grating-Coupled SPR Sensors for Gas Detection and Biosensing
By
Progress In Electromagnetics Research Letters, Vol. 118, 93-98, 2024
Abstract
Surface Plasmon Resonance (SPR) serves as a crucial optical technique in the realm of chemical sensing. Under specific conditions, the reflectivity of a thin metal film exhibits an exceptional sensitivity to optical changes in the medium on one side. In this investigation, we propose and simulate a plasmonic sensor incorporating a silicon nitride grating with Ag layers for the detection of solution and gas at an optical communication wavelength of 1550 nm. In both cases of the surface diffraction-grating, there is a notable enhancement in angular sensitivity compared to conventional prism-coupled configurations. Simulations, employing rigorous coupled wave analysis (RCWA), highlight that the suggested sensor, optimized in design parameters, offers notably superior sensitivity, a lower detection limit, and a higher figure of merit (FOM) than existing grating-based SPR sensors. This implies the potential realization of refractive index sensors with a high figure of merit through such streamlined and compact configurations.
Citation
Mounir Bouras, "High-Performance Silicon Nitride Grating-Coupled SPR Sensors for Gas Detection and Biosensing," Progress In Electromagnetics Research Letters, Vol. 118, 93-98, 2024.
doi:10.2528/PIERL23112206
References

1. Chen, Jing, Jian Shi, Dominique Decanini, Edmond Cambril, Yong Chen, and Anne-Marie Haghiri-Gosnet, "Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography," Microelectronic Engineering, Vol. 86, No. 4-6, 632-635, 2009.
doi:10.1016/j.mee.2008.12.093

2. Lindquist, Nathan C., Prashant Nagpal, Kevin M. McPeak, David J. Norris, and Sang-Hyun Oh, "Engineering metallic nanostructures for plasmonics and nanophotonics," Reports on Progress in Physics, Vol. 75, No. 3, 036501, Mar. 2012.
doi:10.1088/0034-4885/75/3/036501

3. Sadeghi, Pedram, Kaiyu Wu, Tomas Rindzevicius, Anja Boisen, and Silvan Schmid, "Fabrication and characterization of Au dimer antennas on glass pillars with enhanced plasmonic response," Nanophotonics, Vol. 7, No. 2, 497-505, 2017.
doi:10.1515/nanoph-2017-0011

4. Lopez, Gerardo A., M.-Carmen Esteve, Maria Soler, and Laura M. Lechuga, "Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration," Nanophotonics, Vol. 6, No. 1, 123-136, Jan. 2017.
doi:10.1515/nanoph-2016-0101

5. Badri, S. Hadi, M. M. Gilarlue, Sanam Saeid Nahaei, and Jong Su Kim, "High-Q Fano resonance in all-dielectric metasurfaces for molecular fingerprint detection," Journal of the Optical Society of America B, Vol. 39, No. 2, 563-569, 2022.

6. Santoro, Sergio, Ahmet H. Avci, Antonio Politano, and Efrem Curcio, "The advent of thermoplasmonic membrane distillation," Chemical Society Reviews, Vol. 51, 6087-6125, 2022.
doi:10.1039/D0CS00097C

7. Abramovich, Shir, Debasis Dutta, Carlo Rizza, Sergio Santoro, Marco Aquino, Anna Cupolillo, Jessica Occhiuzzi, Mauro Francesco La Russa, Barun Ghosh, Daniel Farias, Andrea Locatelli, Danil W. Boukhvalov, Amit Agarwal, Efrem Curcio, Maya Bar Sadan, and Antonio Politano, "NiSe and CoSe topological nodal-line semimetals: A sustainable platform for efficient thermoplasmonics and solar-driven photothermal membrane distillation," Small, Vol. 18, No. 31, 2201473, Aug. 2022.
doi:10.1002/smll.202201473

8. Viti, Leonardo, Jin Hu, Dominique Coquillat, Antonio Politano, Wojciech Knap, and Miriam S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 20474, Feb. 2016.
doi:10.1038/srep20474

9. Santoro, Sergio, Marco Aquino, Carlo Rizza, Anna Cupolillo, Danil W. Boukhvalov, Gianluca D'Olimpio, Shir Abramovich, Amit Agarwal, Maya Bar Sadan, Antonio Politano, and Efrem Curcio, "Plasmonic nanofillers-enabled solar membrane crystallization for mineral recovery," Desalination, Vol. 563, 116730, Oct. 2023.
doi:10.1016/j.desal.2023.116730

10. Dutta, Debasis, Barun Ghosh, Bahadur Singh, Hsin Lin, Antonio Politano, Arun Bansil, and Amit Agarwal, "Collective plasmonic modes in the chiral multifold fermionic material CoSi," Physical Review B, Vol. 105, 165104, Apr. 2022.
doi:10.1103/PhysRevB.105.165104

11. Politano, Antonio and Gennaro Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Progress in Surface Science, Vol. 90, No. 2, 144-193, May 2015.
doi:10.1016/j.progsurf.2014.12.002

12. Chiarello, Gennaro, Johannes Hofmann, Zhilin Li, Vito Fabio, Liwei Guo, Xiaolong Chen, Sankar Das Sarma, and Antonio Politano, "Tunable surface plasmons in Weyl semimetals TaAs and NbAs," Physical Review B, Vol. 99, 121401, Mar. 2019.
doi:10.1103/PhysRevB.99.121401

13. Avci, Ahmet H., Sergio Santoro, Antonio Politano, Matteo Propato, Massimo Micieli, Marco Aquino, Zhang Wenjuan, and Efrem Curcio, "Photothermal sweeping gas membrane distillation and reverse electrodialysis for light-to-heat-to-power conversion," Chemical Engineering and Processing - Process Intensification, Vol. 164, 108382, Jul. 2021.
doi:10.1016/j.cep.2021.108382

14. Park, Kyoung-Duck and Markus B. Raschke, "Polarization control with plasmonic antenna tips: A universal approach to optical nanocrystallography and vector-field imaging," Nano Letters, Vol. 18, No. 5, 2912-2917, 2018.
doi:10.1021/acs.nanolett.8b00108

15. Nishi, Hiroyasu, Sayaka Hiroya, and Tetsu Tatsuma, "Potential-scanning localized surface plasmon resonance sensor," ACS Nano, Vol. 9, No. 6, 6214-6221, Jun. 2015.
doi:10.1021/acsnano.5b01577

16. Masson, Jean-Francois, "Surface plasmon resonance clinical biosensors for medical diagnostics," ACS sensors, Vol. 2, No. 1, 16-30, 2017.
doi:10.1021/acssensors.6b00763

17. Michel, David, Feng Xiao, and Kamal Alameh, "A compact, flexible fiber-optic surface plasmon resonance sensor with changeable sensor chips," Sensors and Actuators B: Chemical, Vol. 246, 258-261, Jul. 2017.
doi:10.1016/j.snb.2017.02.064

18. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111, Springer-Verlag, Berlin, Heidelberg, New York, 1988.
doi:10.1007/BFb0048317

19. Pandey, Ankit Kumar, Anuj K. Sharma, and Rikmantra Basu, "Fluoride glass-based surface plasmon resonance sensor in infrared region: Performance evaluation," Journal of Physics D: Applied Physics, Vol. 50, No. 18, 185103(1-6), 2017.
doi:10.1088/1361-6463/aa66aa

20. Mounir, Bouras, Charik Haouari, Allal Saïd, and Abdesselam Hocini, "Analysis of highly sensitive biosensor for glucose based on a one-dimensional photonic crystal nanocavity," Optical Engineering, Vol. 58, No. 2, 027102, 2019.
doi:10.1117/1.OE.58.2.027102

21. Charik, Haouari, Mounir Bouras, and Hamza Bennacer, "High-sensitive thermal sensor based on a 1D photonic crystal microcavity with nematic liquid crystal," Progress In Electromagnetics Research M, Vol. 100, 187-195, 2021.
doi:10.2528/PIERM20110404

22. Gorin, A., A. Jaouad, E. Grondin, V. Aimez, and P. Charette, "Fabrication of silicon nitride waveguides for visible-light using PECVD: A study of the effect of plasma frequency on optical properties," Optics Express, Vol. 16, No. 18, 13509-13516, 2008.
doi:10.1364/OE.16.013509

23. Valsecchi, Chiara and Alexandre G. Brolo, "Periodic metallic nanostructures as plasmonic chemical sensors," Langmuir, Vol. 29, No. 19, 5638-5649, 2013.
doi:10.1021/la400085r

24. Pandey, Ankit Kumar and Anuj K. Sharma, "Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer," Photonics and Nanostructures - Fundamentals and Applications, Vol. 28, 94-99, Feb. 2018.
doi:10.1016/j.photonics.2017.12.003

25. Johnson, Peter B. and R. W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370-4379, 1972.

26. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," Journal of the Optical Society of America, Vol. 71, No. 7, 811-818, 1981.

27. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," Journal of the Optical Society of America A, Vol. 12, No. 5, 1068-1076, 1995.
doi:10.1364/JOSAA.12.001068

28. Mirotznik, Mark S., Brandon L. Good, Paul Ransom, David Wikner, and Joseph N. Mait, "Broadband antireflective properties of inverse motheye surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2969-2980, Sep. 2010.
doi:10.1109/TAP.2010.2052575

29. Zhao, B., "Thermal radiative properties of micro/nanostructured plasmonic metamaterials including two-dimensional materials," Georgia Institute of Technology, 2016.