Vol. 116
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-15
Realization of a Second-Order Wide-Stopband Substrate-Integrated Waveguide Filter Using the Weakest Electric Field Method and DGS Structure
By
Progress In Electromagnetics Research Letters, Vol. 116, 87-94, 2024
Abstract
To increase the stopband width of the filter, a second-order wide-stopband substrate-integrated waveguide filter is suggested. This filter is designed by utilizing a DGS structure and the weakest electric field approach. To suppress the modes, the filter sets the inner and outer coupling windows at the modes' weakest electric fields (TE120/TE210, TE220). Additionally, a new nested U-shaped DGS structure is implemented to suppress the TE130 mode, hence expanding the stopband width of the filter. The filter has been processed and measured, and the findings indicate a 4.5 GHz center frequency, a -3 dB bandwidth of 240 MHz, a relative bandwidth of 5.3%, an insertion loss of -1.2 dB in the passband, and a -22 dB stopband, which can be extended up to 9.4 GHz (i.e., 2.1 times the center frequency). The simulated and measured results demonstrate good alignment. Compared to other SIW filters, the current filter achieves a wider stopband while using fewer orders and implementing a straightforward design method, providing potential value for applications.
Citation
Yuxin Fang, Xiaohei Yan, Yixian Wang, and Shengbing Zhang, "Realization of a Second-Order Wide-Stopband Substrate-Integrated Waveguide Filter Using the Weakest Electric Field Method and DGS Structure," Progress In Electromagnetics Research Letters, Vol. 116, 87-94, 2024.
doi:10.2528/PIERL23112202
References

1. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas & Propagation, Vol. 5, No. 8, 909-920, Jun. 2011.
doi:10.1049/iet-map.2010.0463

2. Chen, Xiao-Ping and Ke Wu, "Substrate integrated waveguide filter: Basic design rules and fundamental structure features," IEEE Microwave Magazine, Vol. 15, No. 5, 108-116, Jul.-Aug. 2014.

3. Moscato, Stefano, Cristiano Tomassoni, Maurizio Bozzi, and Luca Perregrini, "Quarter-mode cavity filters in substrate integrated waveguide technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 8, 2538-2547, Aug. 2016.
doi:10.1109/TMTT.2016.2577690

4. Jones, Thomas R. and Mojgan Daneshmand, "Miniaturized folded ridged half-mode and quarter-mode substrate integrated waveguides for filter design," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 8, 3414-3426, Aug. 2019.
doi:10.1109/TMTT.2019.2918519

5. Liu, Qing, Dewei Zhang, Min Tang, Hailin Deng, and Dongfang Zhou, "A class of box-like bandpass filters with wide stopband based on new dual-mode rectangular SIW cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, 101-110, Jan. 2021.
doi:10.1109/TMTT.2020.3037497

6. Yun, Tae-Soon, Hee Nam, Jin-Young Kim, et al. "Harmonics suppressed substrate-integrated waveguide filter with integration of low-pass filter," Microwave and Optical Technology Letters, Vol. 50, No. 2, 447-450, 2008.

7. Zhou, Kang, Chunxia Zhou, and Wen Wu, "Substrate integrated waveguide dual-band filter with wide-stopband performance," Electronics Letters, Vol. 53, No. 16, 1121-1123, Aug. 2017.
doi:10.1049/el.2017.1556

8. Chu, Peng, Kai-Lai Zheng, Feng Xu, and Ke Wu, "Substrate integrated waveguide resonator with harmonic suppression," Electronics Letters, Vol. 54, No. 24, 1388-1389, Nov. 2018.
doi:10.1049/el.2018.6154

9. Chu, Peng, Lei Guo, Long Zhang, Feng Xu, Wei Hong, and Ke Wu, "Wide stopband substrate integrated waveguide filter implemented by orthogonal ports' offset," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 3, 964-970, Mar. 2020.
doi:10.1109/TMTT.2019.2947894

10. Zhou, Kang, Chun-Xia Zhou, and Wen Wu, "Resonance characteristics of substrate-integrated rectangular cavity and their applications to dual-band and wide-stopband bandpass filters design," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 5, 1511-1524, May 2017.
doi:10.1109/TMTT.2016.2645156

11. Zhu, F., W. Hong, J. X. Chen, and K. Wu, "Wide stopband substrate integrated waveguide filter using corner cavities," Electronics Letters, Vol. 49, No. 1, 50-52, Jan. 2013.
doi:10.1049/el.2012.3891

12. Jia, Dinghong, Quanyuan Feng, Qianyin Xiang, and Ke Wu, "Multilayer substrate integrated waveguide (SIW) filters with higher-order mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 9, 678-680, Sep. 2016.
doi:10.1109/LMWC.2016.2597222

13. Yang, Hong, Dongya Shen, Liang Li, Qiang Kang, and Kaibo Kai, "Integrated substrate gap waveguide bandpass filter with wide stopband," 2023 16th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), 1-3, Guangzhou, China, 2023.

14. Su, Zhi Li, Bo Wei Xu, Shao Yong Zheng, Hai Wen Liu, and Yun Liang Long, "High-isolation and wide-stopband SIW diplexer using mixed electric and magnetic coupling," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 1, 32-36, Jan. 2020.
doi:10.1109/TCSII.2019.2903388

15. Kim, Phirun and Yongchae Jeong, "Compact and wide stopband substrate integrated waveguide bandpass filter using mixed quarter-and one-eighth modes cavities," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 1, 16-19, Jan. 2020.
doi:10.1109/LMWC.2019.2954603