Vol. 117
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-02-10
A Compact Multiband Hybrid Rectangular DRA for Wireless Applications
By
Progress In Electromagnetics Research Letters, Vol. 117, 89-96, 2024
Abstract
A new tri band rectangular DRA is simulated and tested for wireless communication applications like ISM, Wi-Max, and WLAN. The dielectric resonator antenna structure is excited by a 50 Ω transmission line. The rectangular DRA with concentric square rings is designed to acquire the operation of triple-bands. The parametric analysis of the rectangular DRA has been carried on HFSS tool. The rectangular DRA exhibits triple-band characteristics at 2.16-2.57 GHz, 3.35-4.45 GHz, and 5.35-5.95 GHz, with a fractional bandwidth of 17.3%, 28.1%, and 10.6%, respectively. The implemented concentric square rings are imposed on FR4-substrate material to emphasize the antenna parameters and to minimize the size. The designed DRA has a compact size, good radiation properties and optimal operational bandwidth. To validate the antenna, it is fabricated, and the fabricated DRA results match well with the simulated ones. The antenna is well suitable for wireless communication applications. The fabricated rectangular DRA is measured by using MS2037C Anritsu-Combinational Analyzer.
Citation
Lavuri Nageswara Rao, Govardhani Immadi, Madhavareddy Venkata Narayana, Ambati Navya, Aovuthu Sree Madhuri, and Kolasani Rajkamal, "A Compact Multiband Hybrid Rectangular DRA for Wireless Applications," Progress In Electromagnetics Research Letters, Vol. 117, 89-96, 2024.
doi:10.2528/PIERL23111804
References

1. Long, S., M. McAllister, and Liang Shen, "The resonant cylindrical dielectric cavity antenna," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 3, 406-412, 1983.
doi:10.1109/TAP.1983.1143080

2. Luk, Kwai Man and Kowk Wa Leung, Dielectric Resonator Antennas, Research Studies Press, Baldock, UK, 2003.

3. Petosa, Aldo, Dielectric Resonator Antenna Handbook, Artech House, Boston, MA, USA, 2007.

4. Chair, R., A. A. Kishk, K. F. Lee, and C. E. Smith, "Wideband flipped staired pyramid dielectric resonator antennas," Electronics Letters, Vol. 40, No. 10, 581-582, May 2004.
doi:10.1049/el:20040402

5. Liang, Xian-Ling and Tayeb A. Denidni, "H-shaped dielectric resonator antenna for wideband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 163-166, 2008.

6. Fakhte, Saeed, Homayoon Oraizi, and Ladislau Matekovits, "Gain improvement of rectangular dielectric resonator antenna by engraving grooves on its side walls," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2167-2170, 2017.
doi:10.1109/LAWP.2017.2702584

7. Chair, R., A. A. Kishk, and K. F. Lee, "Low profile wideband embedded dielectric resonator," IET Microwaves Antennas & Propagation, Vol. 1, No. 2, 294-298, Apr. 2007.
doi:10.1049/iet-map:20060028

8. Chair, R., A. A. Kishk, and K. F. Lee, "Experimental investigation for wideband perforated dielectric resonator antenna," Electronics Letters, Vol. 42, No. 3, 137-139, Feb. 2006.
doi:10.1049/el:20063987

9. Kremer, Hauke Ingolf, Kwok Wa Leung, and Mike W. K. Lee, "Design of substrate-integrated dielectric resonator antenna with dielectric vias," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5205-5214, Sep. 2021.
doi:10.1109/TAP.2021.3060054

10. Altaf, Amir, Jin-Woo Jung, Youngoo Yang, Kang-Yoon Lee, and Keum Cheol Hwang, "Vertical-strip-fed broadband circularly polarized dielectric resonator antenna," Sensors, Vol. 17, No. 8, 1911, 2017.
doi:10.3390/s17081911

11. Altaf, Amir and Munkyo Seo, "Dual-band circularly polarized dielectric resonator antenna for WLAN and WiMAX applications," Sensors, Vol. 20, No. 4, 1137 2020.
doi:10.3390/s20041137

12. Trinh-Van, Son, Youngoo Yang, Kang-Yoon Lee, and Keum Cheol Hwang, "A wideband circularly polarized pixelated dielectric resonator antenna," Sensors, Vol. 16, No. 9, 1349, 2016.
doi:10.3390/s16091349

13. Trinh-Van, Son, Youngoo Yang, Kang-Yoon Lee, and Keum Cheol Hwang, "A wideband circularly polarized antenna with a multiple-circular-sector dielectric resonator," Sensors, Vol. 16, No. 11, 1849, 2016.

14. Altaf, Amir and Munkyo Seo, "Triple-band dual-sense circularly polarized hybrid dielectric resonator antenna," Sensors, Vol. 18, No. 11, 3899, 2018.
doi:10.3390/s18113899

15. Fang, Xiaosheng, Kangping Shi, and Yuxiang Sun, "A broadband differential-fed dual-polarized hollow cylindrical dielectric resonator antenna for 5G communications," Sensors, Vol. 20, No. 22, 6448, 2020.
doi:10.3390/s20226448

16. Haghzadeh, Mahdi, Craig Armiento, and Alkim Akyurtlu, "All-printed flexible microwave varactors and phase shifters based on a tunable BST/polymer," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 6, 2030-2042, 2017.

17. Chen, Shengjian Jammy, Christophe Fumeaux, Pejman Talemi, Benjamin Chivers, and Roderick Shepherd, "Progress in conductive polymer antennas based on free-standing polypyrrole and PEDOT: PSS," 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-4, Montreal, QC, Canada, 2016.

18. Catarinucci, L., F. P. Chietera, and R. Colella, "Permittivity-customizable ceramic-doped silicone substrates shaped with 3-D-printed molds to design flexible and conformal antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4967-4972, Jun. 2020.
doi:10.1109/TAP.2020.2969748

19. Hasan, Nurulfadzilah, Nurul Hazlina Noordin, Mohamad Shaiful Abdul Karim, Mohd Ruzaimi Mat Rejab, and Quan Jin Ma, "Dielectric properties of epoxy–barium titanate composite for 5 GHz microstrip antenna design," SN Applied Sciences, Vol. 2, 1-8, 2020.

20. Lee, Sang-Eui, Seong Pil Choi, Kyung-Sub Oh, Jaehwan Kim, Sang Min Lee, and Kang Rae Cho, "Flexible magnetic polymer composite substrate with ba1.5sr1.5z hexaferrite particles of VHF/Low UHF patch antennas for UAVs and medical implant devices ," Materials, Vol. 13, No. 4, 1021, 2020.
doi:10.3390/ma13041021

21. Lin, Irene Kong Cheh, Mohd Haizal Jamaluddin, Azlan Awang, Raghuraman Selvaraju, Muhammad Hashim Dahri, Leow Chee Yen, and Hasliza A. Rahim, "A triple band hybrid MIMO rectangular dielectric resonator antenna for LTE applications," IEEE Access, Vol. 7, 122900-122913, 2019.
doi:10.1109/ACCESS.2019.2937987

22. Fang, Xiao Sheng and Shuang Ming Chen, "Design of the wide dual-band rectangular souvenir dielectric resonator antenna," IEEE Access, Vol. 7, 161621-161629, 2019.

23. Abdul Rahim, Sadiq Batcha, Ching Kwang Lee, Anyong Qing, and Mohd Haizal Jamaluddin, "A triple-band hybrid rectangular dielectric resonator antenna (RDRA) for 4G LTE applications," Wireless Personal Communications, Vol. 98, 3021-3033, 2018.

24. Darimireddy, N. K., Chan Wang Park, R. Ramana Reddy, and B. R. Sanjeeva Reddy, "Multi-band rectangular hybrid antennas loaded with inter-digital structure slot," 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), 1-4, 2019.

25. Govardhani, I., M. Venkata Narayana, A. Navya, A. Venkatesh, S. Charles Spurjeon, S. Sai Venkat, and S. Sanjay, "Design of high directional crossed dipole antenna with metallic sheets for UHF and VHF applications," International Journal of Engineering & Technology, Vol. 7, No. 1.5, 42-50, 2017.

26. Imamdi, G., M. Venkata Narayan, A. Navya, and A. Roja, "Reflector array antenna design at millimetric (mm) band for on the move applications," ARPN Journal of Engineering and Applied Sciences, Vol. 13, No. 1, 352-359, 2018.

27. Immadi, Govardhani, M. Venkata Narayana, A. Navya, C. Anudeep Varma, A. Abhishek Reddy, A. Manisai Deepika, and K. Kavya, "Analysis of substrate integrated frequency selective surface antenna for IoT applications," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 18, No. 2, 875-881, 2020.

28. Kumar, M. Naveen, M. Venkata Narayana, Govardhani Immadi, P. Satyanarayana, and Ambati Navya, "Analysis of a low-profile, dual band patch antenna for wireless applications," AIMS Electronics and Electrical Engineering, Vol. 7, No. 2, 171-186, 2023.

29. Reddy, Katireddy Harshitha, Madhavareddy Venkata Narayana, Govardhani Immadi, Penke Satyanarayana, Kolasani Rajkamal, and Ambati Navya, "A low-profile electrically small antenna with a circular slot for global positioning system applications," Progress In Electromagnetics Research C, Vol. 133, 27-38, 2023.