Vol. 116
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-06
Wideband Multifunctional Bessel Beams by High Efficiency Spin-Decoupled Metasurface for Near Field Applications
By
Progress In Electromagnetics Research Letters, Vol. 116, 47-53, 2024
Abstract
This paper develops a wideband spin-decoupled unit cell to form high efficiency wideband spin-decoupled metasurface (MTS), which can achieve more versatile Bessel beams with independent control of the beam direction, polarization and Orbital angular momentum (OAM) mode for near field applications. The MTS is designed for wideband dual Bessel beams: Beam-I (RHCP, θ1=30˚, φ1=180˚, l=1), Beam-II (LHCP, θ2=30˚, φ2=0˚, l=0), where φ and θ are the azimuth and elevation angles, respectively; l is the OAM mode; and RHCP(LHCP) represents the right (left) hand circular polarization. Compared with conventional phase gradient MTSs, the proposed MTS achieves more versatile functionalities and better performance: wideband (35.3%), dual Bessel beams, circular polarization (CP), high aperture efficiency (AE) 40%, carrying OAM modes, high ratio of non-diffraction distance/aperture size (6.41), high conversion efficiency for Bessel beams (33%), and high OAM purity (78%-99%). Simulated and measured results agree well, and validate the design method. The proposed unit cell can be used to design other high performance multifunctional Bessel beams. The designed Bessel beams have potential applications in dense channel high capacity communication, efficient wireless power transfer, high-resolution imaging, medical treatment.
Citation
Hui-Fen Huang, and Chu-Xin Zheng, "Wideband Multifunctional Bessel Beams by High Efficiency Spin-Decoupled Metasurface for Near Field Applications," Progress In Electromagnetics Research Letters, Vol. 116, 47-53, 2024.
doi:10.2528/PIERL23111306
References

1. Allen, L., M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, "Orbital angular-momentum of light and the transformation of laguerre-gaussian laser modes," Physical Review A, Vol. 45, No. 11, 8185-8189, Jun. 1992.
doi:10.1103/PhysRevA.45.8185

2. Benassi, Francesca, Walter Fuscaldo, Diego Masotti, Alessandro Galli, and Alessandra Costanzo, "Wireless power transfer in the radiative near-field through resonant bessel-beam launchers at millimeter waves," 2021 IEEE Wireless Power Transfer Conference (WPTC), 1-4, IEEE, Jun. 2021.
doi:10.1109/WPTC51349.2021.9458226

3. Zeng, Yanzhi, Yang Wang, Zhihui Chen, Jiliang Zhang, and Jie Zhang, "Two-dimensional OAM radar imaging using uniform circular antenna arrays," 2020 14th European Conference on Antennas and Propagation (EuCAP 2020), 1-4, IEEE, Copenhagen, Denmark, Mar. 2020.

4. Amphawan, Angela, Ayaz Anwar, Seng-Kai Ong, Juliana Sutanto, Tse-Kian Neo, and Khoirul Anwar, "Free-space optical space division multiplexing for smart healthcare," 2022 8th Annual International Conference on Network and Information Systems For Computers (ICNISC), 527-532, IEEE, 2022.

5. Xie, Qiao, Tao Yu, Zhiguo Tan, Wenke Xie, and Guangwei Qin, "Rotational speed measurement under misalignment conditions based on rotational doppler effect," Aopc 2022: Advanced Laser Technology and Applications, Vol. 12554, 129-134, SPIE, 2023.

6. Durnin, J., J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Physical Review Letters, Vol. 58, 1499-1501, Apr. 1987.
doi:10.1103/PhysRevLett.58.1499

7. Feng, Fan, Soumya Goswami, Siladitya Khan, and Stephen A McAleavey, "Evaluating the feasibility of nondiffractive bessel beams for shear wave elasticity imaging: A simulation study," 2020 IEEE International Ultrasonics Symposium (IUS), 1-4, IEEE, 2020.

8. Zhang, Dajun, Jiale Zhang, Ji Liu, and Xiong Wang, "Topological transformation OAM based on metasurface generated bessel beam," 2019 International Symposium on Antennas and Propagation (ISAP 2019), 1-2, IEEE, Xian, China, Oct. 2019.

9. Wang, Ling, Yang Yang, Shufang Li, Li Deng, Weijun Hong, Chen Zhang, Jianfeng Zhu, and David McGloin, "Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide," IEEE Photonics Journal, Vol. 12, No. 3, 1-12, Jun. 2020.
doi:10.1109/JPHOT.2020.3000779

10. Xu, Bijun, Chao Wu, Zeyong Wei, Yuancheng Fan, and Hongqiang Li, "Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase," Optical Materials Express, Vol. 6, No. 12, 3940-3945, Dec. 2016.
doi:10.1364/OME.6.003940

11. Qin, Fan, Lulan Wan, Lihong Li, Hailin Zhang, Gao Wei, and Steven Gao, "A transmission metasurface for generating OAM beams," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 10, 1793-1796, Oct. 2018.
doi:10.1109/LAWP.2018.2867045

12. Guo, Yinghui, Shicong Zhang, Mingbo Pu, Qiong He, Jinjin Jin, Mingfeng Xu, Yaxin Zhang, Ping Gao, and Xiangang Luo, "Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation," Light-science & Applications, Vol. 10, No. 1, 63, Mar. 2021.
doi:10.1038/s41377-021-00497-7

13. Gao, Xi, Liguang Tang, Xiongbin Wu, and Simin Li, "Broadband and high-efficiency ultrathin pancharatnam-Berry metasurfaces for generating X-band orbital angular momentum beam," Journal of Physics D: Applied Physics, Vol. 54, No. 7, 075104, Feb. 2020.

14. Feng, Qiang, Yifeng Lin, Mingming Shan, Yajie Mu, and Long Li, "Generation and measurement of a bessel vortex beam carrying multiple orbital-angular-momentum modes through a reflective metasurface in the RF domain," Physical Review Applied, Vol. 15, No. 6, 064044, 2021.

15. Zhu, Cheng, Hang Liang, Fa Wang, Fu-Yan Wen, and Jie Huang, "The full-space bessel beam modulator based on pancharatnam-berry metasurface," 2019 Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall), 507-513, IEEE, 2019.

16. Zhi, Jiahao, Yuncheng Guo, Bo Hu, Xiaogang Wang, Xinning Yu, Zhifang Qiu, Kaikai Huang, Min Yao, and Bijun Xu, "Generation of polarization rotation function bessel beams based on all-dielectric metasurfaces," Optics Communications, Vol. 550, 130014, Jan. 2024.
doi:10.1016/j.optcom.2023.130014

17. Devlin, C., A. Ambrosio, N. A. Rubin, J. B. Mueller, and F. Capasso, "Arbitrary spin-to-orbital angular momentum conversion of light," Science, Vol. 358, 896, 2017.
doi:10.1126/science.aao5392

18. Zhu, Long and Jian Wang, "Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators," Scientific Reports, Vol. 4, No. 1, 7441, Dec. 2014.
doi:10.1038/srep07441

19. Huang, Hui-Fen and Jun-Jie Ye, "Reconfigurable reflective multifunction oam metasurface based on spin-decoupling," Optics Letters, Vol. 47, No. 19, 4873-4876, Oct. 2022.
doi:10.1364/OL.463973

20. Ding, Guowen, Ke Chen, Xinyao Luo, Junming Zhao, Tian Jiang, and Yijun Feng, "Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion," Physical Review Applied, Vol. 11, No. 4, 044043, Apr. 2019.
doi:10.1103/PhysRevApplied.11.044043

21. Xu, Peng, Haixia Liu, Ruijie Li, Kunyi Zhang, and Long Li, "Dual-band spin-decoupled metasurface for generating multiple coaxial OAM beams," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 11, 10678-10690, Nov. 2022.
doi:10.1109/TAP.2022.3195573

22. Zheng, Chenglong, Guocui Wang, Jie Li, Jitao Li, Silei Wang, Hongliang Zhao, Mengyao Li, Zhen Yue, Yating Zhang, Yan Zhang, and Jianquan Yao, "All-dielectric metasurface for manipulating the superpositions of orbital angular momentum via spin-decoupling," Advanced Optical Materials, Vol. 9, No. 10, 2002007, May 2021.
doi:10.1002/adom.202002007

23. Liu, Haixia, Hao Xue, Yongjie Liu, and Long Li, "Generation of multiple pseudo bessel beams with accurately controllable propagation directions and high efficiency using a reflective metasurface," Applied Sciences, Vol. 10, No. 20, 7219, Oct. 2020.
doi:10.3390/app10207219

24. Zhong, Yi Cheng and Yu Jian Cheng, "Ka-band wideband large depth-of-field beam generation through a phase shifting surface antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5038-5045, Dec. 2016.
doi:10.1109/TAP.2016.2618849

25. Chávez-Cerda, S, "A new approach to bessel beams," Journal of Modern Optics, Vol. 46, No. 6, 923-930, May 1999.
doi:10.1080/09500349908231313

26. Huang, HuiFen and Xiuling Tang, "Wideband multiple bessel beams with desired directions and energy distribution proportion based on time reversal and genetic algorithm in microwave," IEEE Transactions on Magnetics, Vol. 59, No. 6, Jun. 2023.
doi:10.1109/TMAG.2023.3268371

27. Shahmirzadi, Arash Valizade, Zahra Badamchi, Bahareh Badamchi, and Harish Subbaraman, "Generating concentrically embedded spatially divided OAM carrying vortex beams using transmitarrays," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8436-8448, 2021.