Vol. 124
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-02-08
Ultrawideband Polarization Conversion Metasurface with Wide Incidence Angle Suitable to Reduce RCS of Planar and Curved Surfaces
By
Progress In Electromagnetics Research M, Vol. 124, 19-27, 2024
Abstract
In this paper, an ultrawideband linear cross polarization converter based on metasurface (MS) with wide incidence angle is presented and applied to the reduction of radarcross section (RCS) for planar and conformal surfaces. A pair of bow-and-arrow shaped split ring cells is printed onan FR4 dielectric substrate. The simulated and experimental results indicate that the converter achieves a cross polarization conversion ratio (PCR) of over 90% in 11.5-28.5 GHz (85% relative bandwidth), and that its oblique incidence performance can be stabilized at ±40° with a very small loss of bandwidth (1.65%). Then, the polarization conversion metasurface (PCM) cells and their mirror cells are laid out in a checkerboard array and applied to reduce RCS of planar and conformal surfaces. The planar PCM achieves more than 7 dB of RCS reduction in 11.4 to 29.6 GHz (88.8% relative bandwidth), and the conformal array with a center angle of 90°obtains more than 10 dB RCS reduction in 18.2 to 23.7 GHz. Due to its excellent performances, the proposed metasurface offers promising options for polarization control devices and stealth technology in Ku- and K-bands.
Citation
Jinrong Su, Yanliang Guo, Haipeng Dou, and Xinwei Chen, "Ultrawideband Polarization Conversion Metasurface with Wide Incidence Angle Suitable to Reduce RCS of Planar and Curved Surfaces," Progress In Electromagnetics Research M, Vol. 124, 19-27, 2024.
doi:10.2528/PIERM23111203
References

1. Khan, Muhammad Ismail, Qaisar Fraz, and Farooq A. Tahir, "Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle," Journal of Applied Physics, Vol. 121, No. 4, 045103, Jan. 2017.
doi:10.1063/1.4974849

2. Sun, Wujiong, Qiong He, Jiaming Hao, and Lei Zhou, "A transparent metamaterial to manipulate electromagnetic wave polarizations," Optics Letters, Vol. 36, No. 6, 927-929, 2011.

3. Chatterjee, Joysmita, Akhilesh Mohan, and Vivek Dixit, "Ultrawideband RCS reduction of planar and conformal surfaces using ultrathin polarization conversion metasurface," IEEE Access, Vol. 10, 36563-36575, 2022.
doi:10.1109/ACCESS.2022.3163850

4. Zhang, Jiameng, Lan Yang, Linpeng Li, Tong Zhang, Haihong Li, Qingmin Wang, Yanan Hao, Ming Lei, and Ke Bi, "High-efficiency polarization conversion phase gradient metasurface for wideband anomalous reflection," Journal of Applied Physics, Vol. 122, No. 1, 2017.

5. Zhu, Xi-Cheng, Wei Hong, Ke Wu, Hong-Jun Tang, Zhang-Cheng Hao, Ji-Xin Chen, Hou-Xing Zhou, and Hao Zhou, "Design of a bandwidth-enhanced polarization rotating frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 940-944, Feb. 2014.
doi:10.1109/TAP.2013.2290798

6. Du, Xinye, Hai Lin, Xintong Shi, Yu Mao, and Yanjie Wu, "Triple-band metamaterial polarization converter based on substrate integrated waveguide technology," Cross Strait Radio Science & Wireless Technology Conference, 1-3, 2020.

7. Sohail, Irfan, Yogesh Ranga, Karu P. Esselle, and Stuart G. Hay, "A linear to circular polarization converter based on jerusalem-cross frequency selective surface," 2013 7th European Conference on Antennas and Propagation (EUCAP), 2141-2143, Gothenburg, Sweden, Apr. 2013.

8. Li, Long, Yongjiu Li, Zhao Wu, Feifei Huo, Yongliang Zhang, and Chunsheng Zhao, "Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces," Proceedings of The IEEE, Vol. 103, No. 7, 1057-1070, 2015.
doi:10.1109/JPROC.2015.2437611

9. Kundu, Debidas, Akhilesh Mohan, Ajay Chakrabarty, Jaydeep Singh, and Dharmendra Singh, "An ultrathin linear-to-circular polarization converter with wide axial ratio bandwidth," Proceedings of The 2019 IEEE Asia-pacific Microwave Conference (APMC), 929-931, Singapore, Dec. 2019.
doi:10.1109/apmc46564.2019.9038331

10. Li, Zhi, Jianxun Su, and Zengrui Li, "Design of polarization converter based on the high efficiency transmission phase gradient metasurface," 2017 IEEE Sixth Asia-pacific Conference on Antennas and Propagation (APCAP), 1-3, Xian, China, Oct. 2017.

11. Peng, Lin, Xiao-Feng Li, Xing Jiang, and Si-Min Li, "A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating by graphene," Journal of Lightwave Technology, Vol. 36, No. 19, 4250-4258, Oct. 2018.
doi:10.1109/JLT.2018.2836904

12. Khajeh, Ali, Zahra Hamzavi-Zarghani, and Alireza Yahaghi, "Design and simulation of a polarization converter based on graphene metasurfaces," 2020 28th Iranian Conference on Electrical Engineering (ICEE), 1473-1476, Univ Tabriz, Fac Elect & Comp Engn, Aug. 2020.

13. Bakhtiari, Behnaz and Homayoon Oraizi, "Tunable terahertz polarization converter based on graphene metasurfaces," 2020 14th European Conference on Antennas and Propagation (EUCAP 2020), 1-4, Copenhagen, Denmark, Mar. 2020.

14. Yang, Wan Li and Xi Gao, "A reconfigurable polarization converter based on active metasurface," 2018 Cross Strait Quad-regional Radio Science and Wireless Technology Conference (CSQRWC), 1-2, Xuzhou, China, Jul. 2018.

15. Zhou, Qin, Guohong Du, and DongDong Wang, "Ultra-broadband linear polarization converter based on single-layer reflective metasurface," 2020 IEEE Mtt-s International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO 2020), 1-4, Hangzhou, China, Dec. 2020.
doi:10.1109/NEMO49486.2020.9343609

16. Lin, Baoqin, Lintao Lv, Jianxin Guo, Zhe Liu, Xiang Ji, and Jing Wu, "An ultra-wideband reflective linear-to-circular polarization converter based on anisotropic metasurface," IEEE Access, Vol. 8, 82732-82740, 2020.
doi:10.1109/ACCESS.2020.2988058

17. Fu, Changfeng, Zhijie Sun, Lianfu Han, and Chao Liu, "Dual-bandwidth linear polarization converter based on anisotropic metasurface," IEEE Photonics Journal, Vol. 12, No. 2, 1-11, Apr. 2020.
doi:10.1109/JPHOT.2019.2962336

18. Wang, Lei, Yannan Jiang, Jiao Wang, Weiping Cao, Xi Gao, and Xinhua Yu, "Ultra-broadband reconfigurable linear-to-circular polarization converter based on metasurface in terahertz frequency," 2017 IEEE Sixth Asia-pacific Conference on Antennas and Propagation (APCAP), 1-3, Xian, China, Oct. 2017.

19. Khan, Safiullah and Thomas F. Eibert, "A dual-band metasheet for asymmetric microwave transmission with polarization conversion," IEEE Access, Vol. 7, 98045-98052, 2019.
doi:10.1109/ACCESS.2019.2929115

20. Wang, Shen-Yun, Jie-Dong Bi, Wei Liu, Wen Geyi, and Steven Gao, "Polarization-insensitive cross-polarization converter," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 4670-4680, Aug. 2021.
doi:10.1109/TAP.2021.3060087

21. Gao, Xi, Xu Han, Wei-Ping Cao, Hai Ou Li, Hui Feng Ma, and Tie Jun Cui, "Ultrawideband and high-effificiency linear polarization converter based on double V-shaped metasurface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3522-3530, 2015.

22. Yu, Hang and Jianxun Su, "Dual-band and high-efficiency reflective polarization converter based on strip grating," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 967-968, Electr Network, Jul. 2020.
doi:10.1109/IEEECONF35879.2020.9330064

23. Izhar, R., Meraj E. Mustafa, M. S. Wahidi, and F. A. Tahir, "An anisotropic dual-broadband reflective polarization converter metasurface," IEEE International Conference on Computational Electromagnetics, 1-2, 2019.

24. Khan, Muhammad Ismail, Qaisar Fraz, and Farooq A. Tahir, "Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle," Journal of Applied Physics, Vol. 121, No. 4, Jan. 2017.
doi:10.1063/1.4974849

25. Pandit, Soumen, Akhilesh Mohan, and Priyadip Ray, "Low-RCS low-profile four-element mimo antenna using polarization conversion metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2102-2106, Dec. 2020.
doi:10.1109/LAWP.2020.3023454

26. Ren, Zhongru, Yong-Qiang Liu, Yan Wang, Lan Lu, Kainan Qi, and Hongcheng Yin, "Ultra-broadband RCS reduction based on optimized coding ``whale-shaped'' polarization conversion metasurface with angular stability," IEEE Access, Vol. 10, 50479-50486, 2022.
doi:10.1109/ACCESS.2022.3168826

27. Liu, Jie, Jian-Ying Li, and Zhi Ning Chen, "Broadband polarization conversion metasurface for antenna RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 5, 3834-3839, May 2022.
doi:10.1109/TAP.2021.3137412

28. Hong, Tao, Shuai Wang, Zhengyan Liu, and Shuxi Gong, "RCS reduction and gain enhancement for the circularly polarized array by polarization conversion metasurface coating," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 167-171, Jan. 2019.
doi:10.1109/LAWP.2018.2884944

29. Jing, Xufeng, Xincui Gui, Pengwei Zhou, and Zhi Hong, "Physical explanation of Fabry-Pérot cavity for broadband bilayer metamaterials polarization converter," Journal of Lightwave Technology, Vol. 36, No. 12, 2322-2327, Jun. 2018.
doi:10.1109/JLT.2018.2808339

30. Baghel, Amit Kumar, Shashank Satish Kulkarni, and Sisir Kumar Nayak, "Linear-to-cross-polarization transmission converter using ultrathin and smaller periodicity metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1433-1437, Jul. 2019.
doi:10.1109/LAWP.2019.2919423

31. Lei, Zeyu and Tian Yang, "Converting state of polarization with a miniaturized metasurface device," IEEE Photonics Technology Letters, Vol. 29, No. 7, 615-618, Apr. 2017.
doi:10.1109/LPT.2017.2675453

32. Chen, Wengang, Constantine A. Balanis, Craig R. Birtcher, and Anuj Y. Modi, "Cylindrically curved checkerboard surfaces for radar cross-section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 343-346, Feb. 2018.
doi:10.1109/LAWP.2018.2789906

33. Wang, Yelong, Feng Qi, Zhaoyang Liu, Pengxiang Liu, and Weifan Li, "Ultrathin and flexible reflective polarization converter based on metasurfaces with overlapped arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2512-2516, Dec. 2020.
doi:10.1109/LAWP.2020.3037907

34. Zheng, Qi, Chenjiang Guo, and Jun Ding, "Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1459-1463, Aug. 2018.
doi:10.1109/LAWP.2018.2849352

35. Wang, Qi, Xiangkun Kong, Xiangxi Yan, Yan Xu, Shaobin Liu, Jinjun Mo, and Xiaochun Liu, "Flexible broadband polarization converter based on metasurface at microwave band," Chinese Physics B, Vol. 28, No. 7, 074205, 2019.