Vol. 117
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-19
Detection of Pathogens Using PET Based Microwave Assisted Irradiation to Extend Bread Shelf-Life
By
Progress In Electromagnetics Research Letters, Vol. 117, 1-7, 2024
Abstract
Prolonging the shelf life of bread through cost-effective methods becomes imperative in times of a pandemic when numerous countries are grappling with extended lockdowns. This study explores the application of microwave food processing to identify pathogens by inducing rapid, selective heating within the material. A critical issue in microwave food processing is the uneven distribution of heat, creating cold spots that amplify pathogen growth, thereby increasing the risk of foodborne illnesses such as acute poisoning, diarrhea, fever, abdominal pain, and, in severe instances, even death. In this context, we propose a method for pathogen detection using polyethylene terephthalate (PET), which involves subjecting the bread to high thermal irradiation. To achieve this, a low-profile inset-fed PET-based microstrip patch antenna operating at 4 GHz is employed to detect pathogens by analyzing variations in S-parameters. The suggested PET antenna introduces a flexible approach to pathogen detection, especially at the edges and corners, owing to the conformable choice of substrate.
Citation
Govindarajan Venkat Babu, Arvind Kumar, Kumareson Anish Pon Yamini, Kamatchi Govindaraj Sujanth Narayan, and Dhandapani Rajeshkumar, "Detection of Pathogens Using PET Based Microwave Assisted Irradiation to Extend Bread Shelf-Life," Progress In Electromagnetics Research Letters, Vol. 117, 1-7, 2024.
doi:10.2528/PIERL23110901
References

1. Sinha, S., T. Stander, and J. du Preez, "Inactivating pathogenic micro-organisms through microwave sterilization technology," 2013 International Symposium on Electrodynamic and Mechatronic Systems (SELM), 63-64, 2013.

2. Ilovici, I. and H. Hansen, "Food irradiation and the microwave/rf market," Fourteenth IEEE Symposium on Computer-based Medical Systems, Proceedings, 103-108, Jul. 26-27 2001.
doi:10.1109/CBMS.2001.941705

3. Yang, Yang, Zhipeng Fan, Tao Hong, Maoshun Chen, Xiangwei Tang, Jianbo He, Xing Chen, Changjun Liu, Huacheng Zhu, and Kama Huang, "Design of microwave directional heating system based on phased-array antenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 11, 4896-4904, Nov. 2020.
doi:10.1109/TMTT.2020.3002831

4. Rahman, Md. Naimur, Mohammad T. Islam, and Md. Samsuzzaman Sobuz, "Microwave measurement system to detect salt and sugar concentration," Microwave and Optical Technology Letters, Vol. 60, No. 7, 1772-1774, Jul. 2018.
doi:10.1002/mop.31237

5. Jetawattana, Suwimol and Yves M. Henon, "Ensuring the safety and quality of meals for security forces through the use of irradiation," 2015 First Asian Conference on Defence Technology (ACDT), 55-58, Thailand Def Technol Inst, Hua Hin, Apr. 23-25 2015.

6. Cheng, EM, M. Fareq, A. B. Shahriman, R. Mohd Afendi, Y. S. Lee, S. F. Khor, W. H. Tan, M. N. Nashrul Fazli, A. Z. Abdullah, and M. A. Jusoh, "Development of microstrip patch antenna sensing system for salinity and sugar detection in water," Int. J. Mech. Mechatronics Eng., Vol. 15, No. 5, 31-36, 2014.

7. Kasturi, Sowmya, Steven Le Moan, Donald Bailey, and Jeremy Smith, "Heating patterns recognition in industrial microwave-processed foods," 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), Electr. Network, Nov. 25-27 2020.
doi:10.1109/ivcnz51579.2020.9290639

8. Novac, B. M., P. Sarkar, I. R. Smith, W. Whittow, and C. Greenwood, "An innovative and non-invasive technology for pef food processing," 2009 IEEE Pulsed Power Conference, Vol. 1 and 2, 734-738, Washington, Dc, Jun. 2009.

9. Ekezie, Flora-Glad Chizoba, Da-Wen Sun, Zhang Han, and Jun-Hu Cheng, "Microwave-assisted food processing technologies for enhancing product quality and process efficiency: a review of recent developments," Trends in Food Science & Technology, Vol. 67, 58-69, Sep. 2017.
doi:10.1016/j.tifs.2017.05.014

10. Luan, Donglei and Yifen Wang, "Heating pattern of frozen food affected by microwave oven frequency," 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, Nov. 30-Dec. 02 2015.

11. Wi, Sang-Hyuk, Yong-Shik Lee, and Jong-Gwan Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1196-1199, Apr. 2007.
doi:10.1109/TAP.2007.893427

12. Jain, Sweety, "Early detection of salt and sugar by microstrip moisture sensor based on direct transmission method," Wireless Personal Communications, Aug. 16 2021.
doi:10.1007/s11277-021-08914-1

13. Muradov, Magomed, Patryk Kot, Muhammad Ateeq, Badr Abdullah, Andy Shaw, Khalid Hashim, and Ahmed Al-Shamma'a, "Real-time detection of plastic shards in cheese using microwave-sensing technique," Proceedings, Vol. 42, No. 1, 54, 2019.

14. Aziz, S. Z., Nordin Ramli, M. F. Jamlos, and M. A. Jamlos, "Detecting the survival of E. coli bacteria in different types of water using microwave technique," 2014 IEEE Region 10 Symposium, 430-434, 2014.

15. Portela, Jessica B., Pablo T. Coimbra, Leandro P. Cappato, Veronica O. Alvarenga, Rodrigo B. A. Oliveira, Karen S. Pereira, Denise R. P. Azeredo, Anderson S. Sant'Ana, Janaina S. Nascimento, and Adriano G. Cruz, "Predictive model for inactivation of salmonella in infant formula during microwave heating processing," Food Control, Vol. 104, 308-312, Oct. 2019.
doi:10.1016/j.foodcont.2019.05.006

16. Wu, Yan and Maosheng Yao, "Inactivation of bacteria and fungus aerosols using microwave irradiation," Journal of Aerosol Science, Vol. 41, No. 7, 682-693, Jul. 2010.
doi:10.1016/j.jaerosci.2010.04.004

17. Qu, Chenling, Hongliang Wang, Shengqiang Liu, Fangting Wang, and Chang Liu, "Effects of microwave heating of wheat on its functional properties and accelerated storage," Journal of Food Science and Technology-mysore, Vol. 54, No. 11, 3699-3706, Oct. 2017.
doi:10.1007/s13197-017-2834-y

18. Nguyen, Tien Phung and Sirichai Songsermpong, "Microwave processing technology for food safety and quality: A review," Agriculture and Natural Resources, Vol. 56, No. 1, 57-72, 2022.

19. Shenashen, Mohamed A., Mohammed Y. Emran, Ayman El Sabagh, Mahmoud M. Selim, Ahmed Elmarakbi, and Sherif A. El-Safty, "Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: food safety concerns," Progress in Materials Science, Vol. 124, 100866, 2022.

20. Melini, Valentina and Francesca Melini, "Strategies to extend bread and gf bread shelf-life: From sourdough to antimicrobial active packaging and nanotechnology," Fermentation, Vol. 4, No. 1, 9, Mar. 2018.
doi:10.3390/fermentation4010009

21. Michalak, Joanna, Marta Czarnowska-Kujawska, Joanna Klepacka, and Elzbieta Gujska, "Effect of microwave heating on the acrylamide formation in foods," Molecules, Vol. 25, No. 18, 4140, Sep. 2020.
doi:10.3390/molecules25184140

22. Skowron, Krzysztof, Natalia Wiktorczyk-Kapischke, Katarzyna Grudlewska-Buda, Ewa Wałecka-Zacharska, and Joanna Kwiecińska-Piróg, Other microwave-assisted processes: Microwaves as a method ensuring microbiological safety of food, 395-416, 2022.