Vol. 124
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-02-15
Design and Analysis of a Low-Profile Tapered Slot UWB Vivaldi Antenna for Breast Cancer Diagnosis
By
Progress In Electromagnetics Research M, Vol. 124, 43-51, 2024
Abstract
Antennas are significant passive components in Microwave Imaging (MWI) system. The proposed work focuses on the design and analysis of a Vivaldi antenna of size 45×40×1.6 mm3 for breast cancer diagnosis. The proposed antenna utilizes an FR4 substrate and offers a wideband response. The suggested antenna design is based on a tapered slot antenna. The design utilizes microstrip slot line transition feed as it provides good impedance matching and wide bandwidth. The proposed antenna's design attributes like the radius of the slot and tapering rate are optimized through parametric analysis to achieve desired ultra-wideband (UWB) performance. The UWB offered by the designed antenna is 13.87 GHz (2.79 GHz-16.66 GHz). A Voltage Standing Wave Ratio (VSWR) of less than 2 is obtained for the entire resonating frequency range. The proposed antenna exhibits 60% size reduction compared to the conventional Vivaldi antenna with a peak gain and directivity of 4.77 dBi and 5.84 dBi, respectively. A breast phantom has been designed and simulated for Specific Absorption Rate (SAR) calculation. The designed structure exhibits an average SAR of 0.997\,W/kg. Further, the proposed antenna is fabricated and tested. The measured results agree with simulation findings. Hence, the compactness and radiation performance of the proposed antenna makes it suitable for breast cancer diagnosis.
Citation
Shanmugam Sasikala, Kandasamy Karthika, Shanmugam Arunkumar, Karunakaran Anusha, Srinivasan Adithya, and Ahmed Jamal Abdullah Al-Gburi, "Design and Analysis of a Low-Profile Tapered Slot UWB Vivaldi Antenna for Breast Cancer Diagnosis," Progress In Electromagnetics Research M, Vol. 124, 43-51, 2024.
doi:10.2528/PIERM23110702
References

1. World Health Organization, , Breast cancer fact sheets, https://www.who.int/news-room/fact-sheets/detail/breast-cancer, 2021.

2. Khalil, Muhammad Hassan, Jia Dong Xu, and Tsolmon Tumenjargal, "Microwave imaging: Potential for early breast cancer detection," Proceedings of the Pakistan Academy of Sciences, Vol. 49, No. 4, 279-288, 2012.

3. Heywang-Köbrunner, Sylvia H., Astrid Hacker, and Stefan Sedlacek, "Advantages and disadvantages of mammography screening," Breast Care, Vol. 6, No. 3, 199-207, 2011.
doi:10.1159/000329005

4. American Cancer Society, , Limitations of Mammograms, https://www.cancer.org/cancer/types/breast-cancer/screening-tests-and-early-detection/mammograms/limitations-of-mammograms.html#written_by, 2017.

5. Chowdhury, Nure Alam, Lulu Wang, Md. Shazzadul Islam, Linxia Gu, and Mehmet Kaya, "Microstrip patch antenna with an inverted T-type notch in the partial ground for breast cancer detections," Computer Modeling in Engineering & Sciences, Vol. 138, No. 2, 1301-1322, 2024.
doi:10.32604/cmes.2023.030844

6. Zerrad, Fatima-Ezzahra, Mohamed Taouzari, Makroum El Mostafa, Jamal El Aoufi, Salah D. Qanadli, Muharrem Karaaslan, Ahmed Jamal Abdullah Al-Gburi, and Zahriladha Zakaria, "Microwave imaging approach for breast cancer detection using a tapered slot antenna loaded with parasitic components," Materials, Vol. 16, No. 4, 1496, Feb. 2023.
doi:10.3390/ma16041496

7. Moloney, Brian M., Peter F. McAnena, Sami M. Abd Elwahab, Angie Fasoula, Luc Duchesne, Julio D. Gil Cano, Catherine Glynn, Anna Marie O'Connell, Rachel Ennis, Aoife J. Lowery, and Michael J. Kerin, "Microwave imaging in breast cancer - Results from the first-in-human clinical investigation of the wavelia system," Academic Radiology, Vol. 29, No. 3, S211-S222, Jan. 2022.
doi:10.1016/j.acra.2021.06.012

8. Hassan, Ahmed M. and Magda El-Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Reviews in Biomedical Engineering, Vol. 4, 103-118, 2011.

9. Pan, Jianli, "Medical applications of ultra-wideband (UWB)," Survey Paper, 2007.

10. Alibakhshikenari, Mohammad, Bal S. Virdee, Panchamkumar Shukla, Naser Ojaroudi Parchin, Leyre Azpilicueta, Chan Hwang See, Raed A. Abd-Alhameed, Francisco Falcone, Isabelle Huynen, Tayeb A. Denidni, and Ernesto Limiti, "Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection," IEEE Access, Vol. 8, 174667-174678, 2020.
doi:10.1109/ACCESS.2020.3025672

11. Danjuma, Isah Musa, Mobayode O. Akinsolu, Chan Hwang See, Raed A. Abd-Alhameed, and Bo Liu, "Design and optimization of a slotted monopole antenna for ultra-wide band body centric imaging applications," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 4, No. 2, 140-147, Jun. 2020.
doi:10.1109/JERM.2020.2984910

12. Uyanik, Cafer, Agah Oktay Ertay, Semih Dogu, Ibrahim Akduman, and Hulya Sahinturk, "A coplanar Vivaldi antenna design with improved frequency response for microwave breast imaging," 2016 IEEE Conference on Antenna Measurements & Applications (CAMA), Syracuse, NY, USA, Oct. 2016.

13. Mahmood, Sarmad Nozad, Asnor Juraiza Ishak, Ali Jalal, Tale Saeidi, Suhaidi Shafie, Azura Che Soh, Muhammad Ali Imran, and Qammer H. Abbasi, "A BRA monitoring system using a miniaturized wearable ultra-wideband MIMO antenna for breast cancer imaging," Electronics (Switzerland), Vol. 10, No. 21, Nov. 2021.
doi:10.3390/electronics10212563

14. Vijaykumar, K., M. Baskaran, V. Gayathri, and P. Gayathri, "Design of 4 x 4 antenna array for breast cancer detection," Analog Integrated Circuits and Signal Processing, Vol. 105, No. 3, 395-406, 2020.
doi:10.1007/s10470-020-01707-9

15. Wang, Liting and Bin Huang, "Design of ultra-wideband MIMO antenna for breast tumor detection," International Journal of Antennas and Propagation, Vol. 2012, 2012.
doi:10.1155/2012/180158

16. Ghavami, Navid, Eleonora Razzicchia, Olympia Karadima, Pan Lu, Wei Guo, Ioannis Sotiriou, Efthymios Kallos, George Palikaras, and Panagiotis Kosmas, "The use of metasurfaces to enhance microwave imaging: Experimental validation for tomographic and radar-based algorithms," IEEE Open Journal of Antennas and Propagation, Vol. 3, 89-100, 2022.
doi:10.1109/OJAP.2021.3135146

17. Islam, M. Tarikul, Md. Samsuzzaman, Salehin Kibria, Norbahiah Misran, and Mohammad Tariqul Islam, "Metasurface loaded high gain antenna based microwave imaging using iteratively corrected delay multiply and sum algorithm," Scientific Reports, Vol. 9, No. 1, 1-14, Nov. 2019.
doi:10.1038/s41598-019-53857-0

18. Islam, M. T., M. Z. Mahmud, M. Tarikul Islam, S. Kibria, and M. Samsuzzaman, "A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array," Scientific Reports, Vol. 9, No. 1, 1-13, Oct. 2019.
doi:10.1038/s41598-019-51620-z

19. Cai, Ming, Xiaoqiang Li, Leming Fan, Guangli Yang, and Satish Kumar Sharma, "Broadband compact CPW-fed metasurface antenna for SAR-based portable imaging system," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 2, 1-9, Feb. 2018.
doi:10.1002/mmce.21175

20. Koma'rudin, N. A., Z. Zakaria, A. A. Althuwayb, H. Lago, H. Alsariera, H. Nornikman, A. J. A. Al-Gburi, and P. J. Soh, "Directional wideband wearable antenna with circular parasitic element for microwave imaging applications," Computers, Materials & Continua, Vol. 72, No. 1, 983-998, 2022.
doi:10.32604/cmc.2022.024782

21. Al-Gburi, Ahmed Jamal Abdullah, Imran Bin Mohd Ibrahim, Mohammed Yousif Zeain, and Zahriladha Zakaria, "Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector," IEEE Access, Vol. 8, 92697-92707, 2020.
doi:10.1109/ACCESS.2020.2995069

22. Alibakhshikenari, Mohammad, Bal S. Virdee, Panchamkumar Shukla, Chan H. See, Raed A. Abd-Alhameed, Francisco Falcone, Karim Quazzane, and Ernesto Limiti, "Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems," IET Microwaves, Antennas & Propagation, Vol. 14, No. 3, 183-188, Mar. 2019.
doi:10.1049/iet-map.2019.0362

23. Elsheakh, Dalia N., Rawda A. Mohamed, Omar M. Fahmy, Khaled Ezzat, and Angie R. Eldamak, "Complete breast cancer detection and monitoring system by using microwave textile based antenna sensors," Biosensors (Basel), Vol. 13, No. 1, 87, Jan. 2023.
doi:10.3390/bios13010087

24. Jayalakshmi, J. and S. Ramesh, "Compact fractal wearable antenna for wireless body area communications," Telecommunications and Radio Engineering, Vol. 79, No. 1, 71-80, 2020.

25. Vanitha, M., S. Ramesh, and S. Chitra, "Wearable antennas for remote health care monitoring system using 5G wireless technologies," Telecommunications and Radio Engineering, Vol. 78, No. 14, 1275-1285, 2019.

26. Annalakshmi, T. and S. Ramesh, "Wearable Panda-shaped textile antenna with annular ring-defected ground structure for wireless body area networks," Applied Computational Electromagnetics Society Journal, Vol. 37, No. 5, 546-553, May 2022.
doi:10.13052/2022.ACES.J.370504

27. Annalakshmi, T. and S. Ramesh, "Performance and analysis of UWB aesthetic pattern textile antenna for WBAN applications," Applied Computational Electromagnetics Society Journal, Vol. 35, No. 12, 1525-1531, Dec. 2020.
doi:10.47037/2020.ACES.J.351211

28. Sarkar, Chittajit, "Some parametric studies on Vivaldi antenna," International Journal of u- and e- Service, Science and Technology, Vol. 7, No. 4, 323-328, 2014.
doi:10.14257/ijunesst.2014.7.4.29

29. Ebnabbasi, Khabat, Dan Busuioc, Ralf Birken, and Ming Wang, "Taper design of Vivaldi and co-planar tapered slot antenna (TSA) by Chebyshev transformer," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2252-2259, May 2012.
doi:10.1109/TAP.2012.2189697

30. Pandey, G. K., H. S. Singh, P. K. Bharti, A. Pandey, and M. K. Meshram, "High gain Vivaldi antenna for radar and microwave imaging applications," International Journal of Signal Processing Systems, Vol. 3, No. 1, 35-39, 2014.
doi:10.12720/ijsps.3.1.35-39

31. Saleh, Sahar, Widad Ismail, Intan Sorfina Zainal Abidin, Moh'd Haizal Jamaluddin, Mohammed H. Bataineh, and Asem S. Alzoubi, "Compact UWB Vivaldi tapered slot antenna," Alexandria Engineering Journal, Vol. 61, No. 6, 4977-4994, Jun. 2022.
doi:10.1016/j.aej.2021.09.055

32. Bah, Mamadou Hady, Jingsong Hong, Deedar Ali Jamro, Jia Jun Liang, and Elisee A. Kponou, "Vivaldi antenna and breast phantom design for breast cancer imaging," 2014 7th International Conference on Biomedical Engineering and Informatics, 90-93, Dalian, China, Oct. 2014.

33. Al Omairi, Adel and Dogu Cagdas Atilla, "Ultra-wide-band microstrip patch antenna design for breast cancer detection," Electrica, Vol. 22, No. 1, 41-51, Jan. 2022.
doi:10.5152/electrica.2021.21053

34. Mathur, Monika, Harshal Nigam, D. Mathur, G. Singh, S. K. Bhatnagar, and Mukesh Arora, "Design of wearable UWB microstrip patch antenna for breast cancer tumor detection," Annals of the Romanian Society for Cell Biology, Vol. 25, No. 3, 7751-7759, 2021.