Vol. 123
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-01-15
An Antipodal Vivaldi Antenna for a Drone-Mounted Ground Probing Radar
By
Progress In Electromagnetics Research M, Vol. 123, 53-61, 2024
Abstract
An antenna operating between 300\,MHz and 700\,MHz, designed to be used on a ground penetrating radar installed on an Unmanned Aerial Vehicle (UAV) for the exploration and characterization of the buried ice deposits on Mars, is presented. To this end, a lightweight, high-gain Vivaldi antenna having compact dimensions and high operating bandwidth has been taken into consideration. This antenna, equipped with circular-loaded rectangular slots etched on its radiating arms, exhibits improved performance in terms of size, return loss, gain, and fidelity factor with respect to a conventional antipodal Vivaldi antenna. Experimental measurements performed on a prototype of the Vivaldi antenna with slots showed a return loss lower than -12 dB with realized gains between 4 dBi and 6.5 dBi in the 300-700 MHz frequency band.
Citation
Stefano Pisa, Federico Pastori, Renato Cicchetti, Emanuele Piuzzi, Orlandino Testa, Erika Pittella, Andrea Cicchetti, Paolo D'Atanasio, and Alessandro Zambotti, "An Antipodal Vivaldi Antenna for a Drone-Mounted Ground Probing Radar," Progress In Electromagnetics Research M, Vol. 123, 53-61, 2024.
doi:10.2528/PIERM23110603
References

1. Daniels, David J., Ground Penetrating Radar, IET, 2004.
doi:10.1049/PBRA015E

2. "Mars Helicopter --- NASA's Mars Exploration Program," Available on line at: https://mars.nasa.gov/technology/helicopter/#Overview.

3. Picardi, Giovanni, Jeffrey J. Plaut, Daniela Biccari, Ornella Bombaci, Diego Calabrese, Marco Cartacci, Andrea Cicchetti, Stephen M. Clifford, Peter Edenhofer, William M. Farrell, et al. "Radar soundings of the subsurface of Mars," Science, Vol. 310, No. 5756, 1925-1928, 2005.
doi:10.1126/science.1122165

4. "Mars Express --- Europea Space Agency Mission," Available on line at: https://www.esa.int/Science_Exploration/Space_Science/Mars _Express_overview.

5. Gibson, Peter J., "The vivaldi aerial," 1979 9th European Microwave Conference, 101-105, 1979.

6. Abbosh, Amin M., "Directive antenna for ultrawideband medical imaging systems," International Journal of Antennas and Propagation, Vol. 2008, 854012, 2008.

7. Presse, Anthony, Jean Marie Floc'h, Anne-Claude Tarot, and Christophe Camus, "Broadband uhf flexible vivaldi antenna," 2013 Loughborough Antennas & Propagation Conference (LAPC), 277-280, 2013.

8. Guerra-Huaranga, Tanith, Ruth Rubio-Noriega, and Mark Clemente-Arenas, "Comparative analysis of three types of VHF/UHFantennas for GPR array," 2020 IEEE MTT-S Latin America Microwave Conference (LAMC 2020), 1-4, 2021.

9. Zhang, Jian, Xiaoxing Zhang, and Song Xiao, "Antipodal vivaldi antenna to detect uhf signals that leaked out of the joint of a transformer," International Journal of Antennas and Propagation, Vol. 2017, 9627649, 2017.

10. García Fernández, M., G. Álvarez Narciandi, A. Arboleya, C. Vázquez Antuña, F. L. -H. Andrés, and Y. Álvarez López, "Development of an airborne-based GPR system for landmine and IED detection: Antenna analysis and intercomparison," IEEE Access, Vol. 9, 127382-127396, 2021.
doi:10.1109/ACCESS.2021.3112058

11. Carrel, R. L., "Analysis and design of the log-periodic dipole antenna," Technical Report No. 52, Elec. Univ. of Illinois, 1961.

12. Mistry, Keyur K., Pavlos I. Lazaridis, Zaharias D. Zaharis, Thomas D. Xenos, Emmanouil N. Tziris, and Ian A. Glover, "An optimal design of printed log-periodic antenna for L-band EMC applications," 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), 1150-1155, 2018.

13. Chopade, Pooja and S. V. Gaikwad, "Design and analysis of log periodic dipole array antenna," Ictact. J. Microelectron., Vol. 5, 836-844, 2019.

14. Abdulhameed, Abdulghafor A. and Zdenek Kubik, "Design a compact printed log-periodic biconical dipole array antenna for EMC measurements," Electronics, Vol. 11, No. 18, 2877, Sep. 2022.
doi:10.3390/electronics11182877

15. Pisa, Stefano, Simone Chicarella, Erika Pittella, Emanuele Piuzzi, Orlandino Testa, and Renato Cicchetti, "A double-sideband continuous-wave radar sensor for carotid wall movement detection," IEEE Sensors Journal, Vol. 18, No. 19, 8162-8171, Oct. 2018.
doi:10.1109/JSEN.2018.2862430

16. Mistry, Keyur K., I. Lazaridis, Zaharias D. Zaharis, and Tian Hong Loh, "Design and optimization of compact printed log-periodic dipole array antennas with extended low-frequency response," Electronics, Vol. 10, No. 17, 2044, Sep. 2021.
doi:10.3390/electronics10172044

17. Duhamel, Raymond H., "Dual polarized sinuous antennas," US Patent 4,658,262, 1987.

18. Crocker, Dylan A. and Jr. Scott, "On the design of sinuous antennas for UWB radar applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1347-1351, Jul. 2019.
doi:10.1109/LAWP.2019.2916477

19. Mescia, Luciano, Gianvito Mevoli, Claudio Maria Lamacchia, Michele Gallo, Pietro Bia, Domenico Gaetano, and Antonio Manna, "Sinuous antenna for UWB radar applications," Sensors, Vol. 22, No. 1, Jan. 2022.
doi:10.3390/s22010248

20. Bellion, A., C. Le Meins, A. Julien-Vergonjanne, and T. Monediere, "A new compact dually polarized direction finding antenna on the UHF band," 2008 IEEE Antennas and Propagation Society International Symposium, Vol. 1-9, San Diego, Ca, Jul. 2008.

21. Kim, Donghyun, Chan Yeong Park, Youngwan Kim, Hyun Kim, and Young Joong Yoon, "Four-arm sinuous antenna with low input impedance for wide gain bandwidth," IEEE Access, Vol. 10, 35265-35272, 2022.
doi:10.1109/ACCESS.2022.3163821

22. Brown, George H. and O. M. Woodward, "Experimentally determined radiation characteristics of conical and triangular antennas," RCA Review, Vol. 13, No. 4, 425-452, 1952.

23. Lestari, A. A., A. G. Yarovoy, and L. P. Ligthart, "An efficient ultra-wideband bow-tie antenna," 2001 31st European Microwave Conference, 1-4, 2001.

24. See, Chan Hwang, Raed A. Abd-Alhameed, Siau Wei Jonis Chung, Dawei Zhou, Hussain Al-Ahmad, and Peter S. Excell, "The design of a resistively loaded bowtie antenna for applications in breast cancer detection systems," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2526-2530, May 2012.
doi:10.1109/TAP.2012.2189730

25. Li, Xuyang, Malyhe Jalilvand, Yoke Leen Sit, and Thomas Zwick, "A compact double-layer on-body matched bowtie antenna for medical diagnosis," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1808-1816, Apr. 2014.
doi:10.1109/TAP.2013.2297158

26. Qu, Shi-Wei, Jia-Lin Li, Quart Xue, and Chi Hou Chan, "Wideband cavity-backed bowtie antenna with pattern improvement," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3850-3854, Dec. 2008.
doi:10.1109/TAP.2008.2007395

27. Goncalves Licursi de Mello, Rafael, Anne Claire Lepage, and Xavier Begaud, "The bow-tie antenna: Performance limitations and improvements," IET Microwaves Antennas & Propagation, Vol. 16, No. 5, 283-294, Apr. 2022.
doi:10.1049/mia2.12242

28. Pozar, David M., Microwave Engineering, John Wiley & Sons, 2011.

29. Tahar, Ziani, X. Derobert Benslama, and M., "An ultra-wideband modified vivaldi antenna applied to through the ground and wall imaging," Progress In Electromagnetics Research C, Vol. 86, 111-122, 2018.
doi:10.2528/PIERC18051502

30. Lamensdorf, David and Leon Susman, "Baseband-pulse-antenna techniques," IEEE Antennas and Propagation Magazine, Vol. 36, No. 1, 20-30, 1994.
doi:10.1109/74.262629

31. Rogers Corporation, A. Z. Chandler, "Low outgassing characteristics of rogers laminates approved for spacecraft applications," USA, 2002.

32. Fioranelli, Francesco, Sana Salous, Ivan Ndip, and Xavier Raimundo, "Through-the-wall detection with gated FMCW signals using optimized patch-like and Vivaldi antennas," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 1106-1117, 2015.
doi:10.1109/TAP.2015.2389793