Vol. 117
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-28
Sensorless Control of Permanent Magnet-Assisted Synchronous Reluctance Motor Based on Adaptive Sliding Mode Observer
By
Progress In Electromagnetics Research Letters, Vol. 117, 33-40, 2024
Abstract
To solve the issue of chattering that occurs during the estimation of the rotor position in the permanent magnet-assisted synchronous reluctance motor using the conventional sliding mode observer (SMO), the saturation function is used in this paper instead of the original sign function to reduce its jittering effect; to solve the problem of phase delay caused by the low-pass filter (LPF), the adaptive law is implemented as a substitute for the LPF. This allows for a smoother back electromotive force and eliminates the need for position compensation caused by phase delay; finally, the phase-locked-loop (PLL) technique is used to extract more accurate rotor position information. A 3 kW permanent magnet-assisted synchronous reluctance motor is taken as the control object, and a simulation model of the control system is established. The results show that the improved saturation function adaptive SMO has higher level of accuracy in estimating rotor position information than the conventional SMO.
Citation
Aide Xu, Xinyu Li, Shimai Hu, and Xin Liu, "Sensorless Control of Permanent Magnet-Assisted Synchronous Reluctance Motor Based on Adaptive Sliding Mode Observer," Progress In Electromagnetics Research Letters, Vol. 117, 33-40, 2024.
doi:10.2528/PIERL23103001
References

1. Vagati, A., M. Pastorelli, G. Franceschini, and S. C. Petrache, "Design of low-torque-ripple synchronous reluctance motors," IEEE Transactions on Industry Applications, Vol. 34, No. 4, 758-765, 1998.
doi:10.1109/28.703969

2. Xu, M. M., G. J. Liu, Q. Chen, and W. X. Zhao, "Review on design and key technology development of permanent magnet assisted synchronous reluctance motor," Proceedings of the CSEE, Vol. 39, No. 23, 7033-7043, 2019.

3. Wen, Z. K. and J. B. Chu, "Deadbeat direct torque control of PMASynRM based on stator field orientation," Electric Machines & Control Application, Vol. 49, No. 05, 20-26, 2022.

4. Zheng, S. Y., X. Y. Zhu, L. Xu, et al. "Design and performance analysis of pm-assisted synchronous reluctance motor considering high torque-quality ratio," Chinese Journal of Electrical Engineering, Vol. 42, No. 19, 7236-7248, 2022.

5. Leuzzi, Riccardo, Paolo Cagnetta, Simone Ferrari, Paolo Pescetto, Gianmario Pellegrino, and Francesco Cupertino, "Transient overload characteristics of PM-assisted synchronous reluctance machines, including sensorless control feasibility," IEEE Transactions on Industry Applications, Vol. 55, No. 3, 2637-2648, 2019.

6. Huang, H. and Y. S. Hu, Design and Application of Permanent Magnet-assisted Synchronous Reluctance Motor, Machinery Industry Press, Beijing, 2017.

7. Cao, H. P., M. M. Ai, and Y. B. Wang, "Research status and development trend of permanent magnet assisted synchronous reluctance motor," Transactions of China Electrotechnical Society, Vol. 37, No. 18, 4575-4592, 2022.

8. Xie, Z. X., "Research on control strategies of permanent magnet-assisted synchronous reluctance motor," Zhejiang University, Zhejiang, 2021.

9. Niazi, Peyman, Hamid A. Toliyat, and Abbas Goodarzi, "Robust maximum torque per ampere (MTPA) control of PM-assisted SynRM for traction applications," IEEE Transactions on Vehicular Technology, Vol. 56, No. 4, 1538-1545, 2007.

10. Joo, Kyoung-Jin, In-Gun Kim, Ju Lee, and Sung-Chul Go, "Robust speed sensorless control to estimated error for PMa-SynRM," IEEE Transactions on Magnetics, Vol. 53, No. 6, 1-4, 2017.

11. Wang, X. H., W. Z. Lian, M. Y. Zhai, et al. "Sensorless control method of permanent magnet synchronous motor based on a modified sliding-mode observer," Control Theory & Applications, Vol. 40, 2023.

12. Rahmatullah, Rohullah, Ayca Ak, and Necibe Fusun Oyman Serteller, "SMC controller design for DC motor speed control applications and performance comparison with FLC, PID and PI controllers," Intelligent Sustainable Systems, Vol. 579, 607-617, 2023.

13. Chakali, Anil K., Hamid A. Toliyat, and Haitham Abu-Rub, "Observer-based sensorless speed control of PM-assisted SynRM for direct drive applications," 2010 IEEE International Symposium on Industrial Electronics, 3095-3100, Bari, Italy, 2010.

14. Zhang, Zhiwei and Libing Zhou, "Sensorless control of a ferrite PM assisted-synchronous reluctance machines by using sliding mode observer and high frequency signal injection," Elektronika Ir Elektrotechnika, Vol. 22, No. 4, 11-15, 2016.

15. Zhang, L. W., X. Li, and P. P. Song, "Sensorless vector control using a new sliding mode observer for permanent magnet synchronous motor speed control system," Transactions of China Electrotechnical Society, Vol. 34, No. S1, 70-78, 2019.

16. Wu, C. L. and J. B. Chu, "Position sensorless control using an improved sliding mode observer of PMASynRM," Electric Machines & Control Application, Vol. 48, No. 07, 26-33, 2021.

17. Zhao, Feng, Wen Luo, Fengyang Gao, et al. "Sensorless hybrid control for permanent magnet synchronous motor using fuzzy sliding mode controller and two-stage filter observer," Control Theory and Applications, Vol. 37, No. 8, 1865-1872, 2020.