Vol. 124
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-02-20
On Chip Modulated Scattering Tag Operating at Millimetric Frequency Band
By
Progress In Electromagnetics Research M, Vol. 124, 71-77, 2024
Abstract
A miniaturized modulated scattering technique (MST) tag able to operate at millimetric frequency bands is proposed in this work. In particular, the proposed tag operates like an RFID tag, but thanks to the MST technique it does not require a radio frequency front end. The information is carried on by modulating an interrogating electromagnetic wave with a suitable change of load impedance of the tag antenna obtained by means of an electronic switch. With respect to standard RFID tags, characterized by limited operative range, MST tags can theoretically reach any distance up to kilometres. In this work, all the components of the MST tag are directly designed on-chip leading to a very compact design. In particular, the tag has been designed to operate at millimetric frequency bands up to 70 GHz. The preliminary experimental results are quite promising, and they demonstrated the capabilities and potentialities of this technique.
Citation
Irene Dal Chiele, Massimo Donelli, Jacopo Iannacci, and Koushik Guha, "On Chip Modulated Scattering Tag Operating at Millimetric Frequency Band," Progress In Electromagnetics Research M, Vol. 124, 71-77, 2024.
doi:10.2528/PIERM23102707
References

1. Bolomey, Jean-Charles and Fred E. Gardiol, Engineering Applications of the Modulated Scattering Technique, Artech House, Norwood, MA, USA, 2001.

2. Liang, W., G. Hygate, J. F. Nye, D. G. Gentle, and R. J. Cook, "A probe for making near-field measurements with minimal disturbance: The optically modulated scatterer," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 5, 772-780, May 1997.
doi:10.1109/8.575620

3. Caorsi, S., M. Donelli, and M. Pastorino, "A passive antenna system for data acquisition in scattering applications," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 203-206, 2002.

4. Donelli, Massimo and D. Franceschini, "Experiments with a modulated scattering system for through-wall identification," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 20-23, 2010.
doi:10.1109/LAWP.2010.2041026

5. Donelli, Massimo, "Design of long-range, powerless RFID sensor at 10 GHz," Electronics Letters, Vol. 49, No. 20, 1277-1278, Sep. 2013.

6. Donelli, Massimo and Federico Viani, "Remote inspection of the structural integrity of engineering structures and materials with passive MST probes," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 12, 6756-6766, Dec. 2017.
doi:10.1109/TGRS.2017.2734042

7. Manekiya, M. and M. Donelli, "An air quality monitoring system with enhanced coverage capabilities by using the modulated scattering technique (MST)," 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring), 2235-2240, Rome, Italy, Jun. 2019.
doi:10.1109/piers-spring46901.2019.9017440

8. Manekiya, Mohammedhusen, Massimo Donelli, Viviana Mulloni, and Giada Marchi, "Integration of modulated scattering technique (MST) tags with IoT devices," Proceedings of the 2022 21st Mediterranean Microwave Symposium (MMS 2022), 80-84, Pizzo Calabro, Italy, May 2022.
doi:10.1109/MMS55062.2022.9825565

9. Manekiya, Mohammedhusen, Massimo Donelli, Abhinav Kumar, and Sreedevi K. Menon, "A novel detection technique for a chipless RFID system using quantile regression," Electronics, Vol. 7, No. 12, 409, Dec. 2018.
doi:10.3390/electronics7120409

10. Mulloni, Viviana and Massimo Donelli, "Chipless RFID sensors for the internet of things: Challenges and opportunities," Sensors, Vol. 20, No. 7, 2135, Apr. 2020.
doi:10.3390/s20072135

11. Aiswarya, S., Sreedevi K. Menon, and Massimo Donelli, "Development of enhanced range, high Q, passive, chipless RFID tags for continuous monitoring and sensing applications," Electronics, Vol. 11, No. 1, 127, 2021.
doi:10.3390/electronics11010127

12. Bracht, Roger, Edmund K. Miller, and Thomas Kuckertz, "An impedance-modulated-reflector system," IEEE Potentials, Vol. 18, No. 4, 29-33, Nov. 1999.

13. Capdevila, Santiago, Lluis Jofre, Jean-Charles Bolomey, and Jordi Romeu, "RFID multiprobe impedance based sensors," IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 12, 3093-3101, Dec. 2010.
doi:10.1109/TIM.2010.2063053

14. Capdevila, Santiago, Lluis Jofre, Jordi Romeu, and Jean-Charles Bolomey, "Passive RFID based sensing," 2011 IEEE International Conference on RFID-Technologies and Applications, 507-512, Sep. 2011.

15. Donelli, Massimo, "Guidelines for the design and optimization of wireless sensors based on the modulated scattering technique," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 7, 1824-1833, Jul. 2014.
doi:10.1109/TIM.2013.2297813

16. Donelli, M., "A broadband modulated scattering technique (MST) probe based on a self complementary antenna," 2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 25-28, Verona, Italy, Sep. 2017.

17. Donelli, Massimo and Federico Viani, "Graphene-based antenna for the design of modulated scattering technique (MST) wireless sensors," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1561-1564, 2016.
doi:10.1109/LAWP.2016.2517041

18. Donelli, Massimo, "A 24 GHz environmental sensor based on the modulated scattering technique (MST)," 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-3, Antibes Juan-les-Pins, France, Nov. 2014.

19. Gentili, Fabrizio, Luca Pelliccia, Fabrizio Cacciamani, Paola Farinelli, and Roberto Sorrentino, "RF MEMS bandwidth-reconfigurable hairpin filters," 2012 Asia Pacific Microwave Conference Proceedings, 735-737, Kaohsiung, Taiwan, Dec. 2012.

20. Mansour, R. R., "RF MEMS for space applications," 2005 International Conference on MEMS, NANO and Smart Systems, Proceedings, 191-192, Banff, AB, Canada, Jul. 2005.
doi:10.1109/ICMENS.2005.104

21. Iannacci, Jacopo, Christian Tschoban, Jacob Reyes, and Uwe Maass, "RF-MEMS for 5G mobile communications: A basic attenuator module demonstrated up to 50 GHz," 2016 IEEE Sensors, 1-3, Orlando, FL, USA, Oct. 2016.

22. Iannacci, Jacopo, "RF-MEMS technology: An enabling solution in the transition from 4G-LTE to 5G mobile applications," 2017 IEEE Sensors, 942-944, Glasgow, UK, Oct. 2017.

23. Donelli, Massimo and Jacopo Iannacci, "Exploitation of RF-MEMS switches for the design of broadband modulated scattering technique wireless sensors," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 44-48, Jan. 2019.
doi:10.1109/LAWP.2018.2880420

24. Donelli, Massimo, Mohammedhusen Manekiya, and Jacopo Iannacci, "Broadband MST sensor probes based on a SP3T MEMs switch," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 649-650, Atlanta, GA, USA, Jul. 2019.
doi:10.1109/apusncursinrsm.2019.8888839

25. Bolomey, Jean Charles, Santiago Capdevila, Lluis Jofre, and Jordi Romeu, "Electromagnetic modeling of RFID-modulated scattering mechanism. Application to tag performance evaluation," Proceedings of the IEEE, Vol. 98, No. 9, 1555-1569, Sep. 2010.
doi:10.1109/JPROC.2010.2053332

26. Bolomey, J.-C., H. Memarzadeh-Tehran, and J.-J. Laurin, "Optimization of optically and electrically modulated scattering probes for field measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 1, 154-165, Jan. 2014.
doi:10.1109/TIM.2013.2277533