Vol. 115
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-19
Frequency-Selective and Broadband Measurements of Radio Frequency Electromagnetic Field Levels in the University Campus
By
Progress In Electromagnetics Research Letters, Vol. 115, 47-55, 2024
Abstract
Characterization of radio frequency electromagnetic field exposure levels is considered crucial for green and sustainable wireless-empowered campuses. To investigate the university campus electromagnetic characteristics, we conducted concurrent environment-oriented and human-centric measurement campaigns with broadband and frequency selective methodologies, respectively. The broadband results are derived after processing samples of 6-minute averages of measured electric and magnetic field values, taken at various university indoor and outdoor spots using broadband survey meter. Comparative analysis of broadband measurements shows that campus outdoor electric field levels in the sub 3 GHz band average around 1.67 V/m are at least twice higher than the ones recorded in indoor environments such as dormitories, labs, and classrooms. Students' exposure pattern in the 88 MHz-6 GHz range is derived after post-processing of more than 340 thousand electric field samples which were taken every 5 seconds at various campus environments using narrowband frequency selective measurement equipment. The comparison of cumulative distribution functions per wireless technology and environment shows that Wi-Fi is the main contributor to students' personal exposure levels in indoor environments and exceeds the 2G-5G mobile communication emitted electric fields in campus outdoor environments. The presented results can be used for exposure-aware heterogeneous network planning and optimization in university campuses or comparable environments.
Citation
Doruntinё Berisha, Hëna Maloku Berzati, Jeta Dobruna, Zana Limani Fazliu, and Mimoza Ibrani, "Frequency-Selective and Broadband Measurements of Radio Frequency Electromagnetic Field Levels in the University Campus," Progress In Electromagnetics Research Letters, Vol. 115, 47-55, 2024.
doi:10.2528/PIERL23102704
References

1. Chiaraviglio, Luca, Cristian Di Paolo, and Nicola Blefari-Melazzi, "5G network planning under service and EMF constraints: formulation and solutions," IEEE Transactions on Mobile Computing, Vol. 21, No. 9, 3053-3070, Sept. 1 2022.
doi:10.1109/TMC.2021.3054482

2. Malandrino, Francesco, Emma Chiaramello, Marta Parazzini, and Carla Fabiana Chiasserini, "Performance and EMF exposure trade-offs in human-centric cell-free networks," 2022 20th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WIOPT 2022), 377-382, Sep. 19-23 2022.

3. Ibrani, Mimoza, Enver Hamiti, Luan Ahma, and Besfort Shala, "Assessment of personal radio frequency electromagnetic field exposure in specific indoor workplaces and possible worst-case scenarios," AEU-International Journal of Electronics and Communications, Vol. 70, No. 6, 808-813, 2016.
doi:10.1016/j.aeue.2016.03.007

4. Hamiti, Enver, Luan Ahma, Miranda Kukaj, and Elmaz Maloku, "Measurements and analysis of personal exposure to RF-EMF inside and outside school buildings: A case study at a kosovo school," IEEE Access, Vol. 10, 52866-52875, 2022.
doi:10.1109/ACCESS.2022.3174223

5. Gallastegi, Mara, Anke Huss, Loreto Santa-Marina, Juan J. Aurrekoetxea, Monica Guxens, Laura Ellen Birks, Jesus Ibarluzea, David Guerra, Martin Roeoesli, and Ana Jimenez-Zabala, "Children's exposure assessment of radiofrequency fields: Comparison between spot and personal measurements," Environment International, Vol. 118, 60-69, Sep. 2018.
doi:10.1016/j.envint.2018.05.028

6. Panagiotakopoulos, Theodor, Yiannis Kiouvrekis, Loukas-Moysis Misthos, and Constantine Kappas, "RF-EMF exposure assessments in greek schools to support ubiquitous IOT-based monitoring in smart cities," IEEE Access, Vol. 11, 7145-7156, 2023.
doi:10.1109/ACCESS.2023.3237970

7. Ibrani, Mimoza, Enver Hamiti, Luan Ahma, Rreze Halili, Vlerar Shala, and Doruntine Berisha, "Narrowband frequency-selective up-link and down-link evaluation of daily personal-exposure induced by wireless operating networks," Wireless Networks, Vol. 23, No. 4, 1191-1200, May 2017.
doi:10.1007/s11276-016-1215-1

8. Ramirez-Vazquez, Raquel, Isabel Escobar, Guy A. E. Vandenbosch, Francisco Vargas, David A. Caceres-Monllor, and Enrique Arribas, "Measurement studies of personal exposure to radiofrequency electromagnetic fields: A systematic review," Environmental Research, Vol. 218, Feb. 1 2023.
doi:10.1016/j.envres.2022.114979

9. Celaya-Echarri, Mikel, Leyre Azpilicueta, Victoria Ramos, Peio Lopez-Iturri, and Francisco Falcone, "Empirical and modeling approach for environmental indoor RF-EMF assessment in complex high-node density scenarios: public shopping malls case study," IEEE Access, Vol. 9, 46755-46775, 2021.
doi:10.1109/ACCESS.2021.3067852

10. Iakovidis, Serafeim, Christos Apostolidis, Athanasios Manassas, and Theodoros Samaras, "Electromagnetic fields exposure assessment in europe utilizing publicly available data," Sensors, Vol. 22, No. 21, Nov. 2022.
doi:10.3390/s22218481

11. Celaya-Echarri, Mikel, Leyre Azpilicueta, Peio Lopez-Iturri, Erik Aguirre, Silvia De Miguel-Bilbao, Victoria Ramos, and Francisco Falcone, "Spatial characterization of personal rf-emf exposure in public transportation buses," IEEE Access, Vol. 7, 33038-33054, 2019.
doi:10.1109/ACCESS.2019.2903405

12. Betta, Giovanni, Domenico Capriglione, Gianni Cerro, Gianfranco Miele, Marzia Salone D'Amata, Darko Suka, Predrag Pejovic, and Mirjana Simic-Pejovic, "On the measurement of human exposure to cellular networks," IEEE Instrumentation & Measurement Magazine, Vol. 23, No. 9, 5-13, Dec. 2020.
doi:10.1109/mim.2020.9289066

13. Bhatt, Chhavi Raj, Stuart Henderson, Chris Brzozek, and Geza Benke, "Instruments to measure environmental and personal radiofrequency-electromagnetic field exposures: An update," Physical and Engineering Sciences in Medicine, Jun. 23 2022.
doi:10.1007/s13246-022-01146-y

14. Ramirez-Vazquez, Raquel, Isabel Escobar, Antonio Martinez-Plaza, and Enrique Arribas, "Comparison of personal exposure to radiofrequency electromagnetic fields from Wi-Fi in a spanish university over three years," Science of The Total Environment, Vol. 858, No. 3, Feb. 1 2023.
doi:10.1016/j.scitotenv.2022.160008

15. Fellan, A., C. Hobelsberger, C. Schellenberger, D. Lindenschmitt, and H. D. Schotten, "Electromagnetic field strength measurements in a private 5G campus network," Proceedings of the 18th ACM International Symposium on QoS and Security for Wireless and Mobile Networks, 11-17, 2022.

16. Kunter, F., "Students exposure to radio frequency electromagnetic fields in Marmara University," Marmara Fen Bilimleri Dergisi, Vol. 27, No. 1, 32-36, 2015.
doi:10.7240/mufbed.70492

17. Alahidin, M. F., N. A. Zakaria, Z. Ismail Khan, N. Emileen Abd Rashid, K. K. M. Shariff, and S. A. Enche Ab Rahim, "Electromagnetic wave exposure level from mobile base station around residential area," 2020 IEEE International RF and Microwave Conference (RFM), Kuala Lumpur, Malaysia, Dec. 14-16 2020.
doi:10.1109/RFM50841.2020.9344783

18. Keskinkilinc, Ugur, Abdullah Arikan, Busra Kizilaslan, Sinem Tekin, Turgut Komurkara, Elif Kilinc, Teoman Karadag, Ismail Can Dikmen, H. Gokhan Bakir, Kubra Kartaca, and Teymuraz Abbasov, "Electromagnetic field pollution measurements and mappings in a university settlement," 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Inonu Univ, Malatya, Sep. 28-30 2018.

19. Kljajic, Dragan, Nikola Djuric, and Karolina Kasas-Lazetic, "Comparative EMF monitoring campaign over the campus area of the University of Novi Sad," Proceedings of 18th International Conference on Smart Technologies (IEEE Eurocon 2019), Novi Sad, Serbia, Jul. 01-04 2019.
doi:10.1109/eurocon.2019.8861562

20. Karpat, Esin and M. Rafet Bakcan, "Measurement and prediction of electromagnetic radiation exposure level in a university," Tehnicki Vjesnik-technical Gazette, Vol. 29, No. 2, 449-455, Feb. 2022.
doi:10.17559/TV-20200418183308

21. Morimoto, Ryota, Akimasa Hirata, Ilkka Laakso, Marvin C. Ziskin, and Kenneth R. Foster, "Time constants for temperature elevation in human models exposed to dipole antennas and beams in the frequency range from 1 to 30 GHz," Physics in Medicine and Biology, Vol. 62, No. 5, 1676-1699, Mar. 7 2017.
doi:10.1088/1361-6560/aa5251

22. ICNIRP "Guidelines for limiting exposure to electromagnetic fields (100 KHz to 300 GHz)," Health Physics, Vol. 118, No. 5, 483-524, May 2020.
doi:10.1097/HP.0000000000001210

23. Tyrakis, Charilaos, Kiki Theodorou, Yiannis Kiouvrekis, Aris Alexias, and Constantin Kappas, "Radiofrequency exposure levels in greece," Bioelectromagnetics, Vol. 44, No. 1-2, 17-25, Jan. 2023.
doi:10.1002/bem.22434

24. Paul, Gouri S., Kaushik Mandal, Juin Acharjee, and Partha P. Sarkar, "Reduction of mobile phone radiation exposure using multi-stopband frequency selective surface," Progress In Electromagnetics Research M, Vol. 83, 9-18, 2019.
doi:10.2528/PIERM19041401

25. Paul, Gouri Shankar and Kaushik Mandal, "Polarization-insensitive and angularly stable compact ultrawide stop-band frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1917-1921, Sep. 2019.
doi:10.1109/LAWP.2019.2933545