Vol. 117
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-24
Low Phase Noise, High Output Power and Compact Microwave Planar Oscillator for C-Band Applications
By
Progress In Electromagnetics Research Letters, Vol. 117, 21-26, 2024
Abstract
In this paper, a novel microwave oscillator is developed at frequencies of 5.7 and 7.5 GHz through the application of Negative Resistance and Harmonic Balance theory. The design process involves leveraging the Agilent Advance Design System (ADS) tool, ensuring exceptional electromagnetic (EM) performance. The utilization of microstrip circuit elements enhances the overall performance of the oscillator structure. Following optimization and co-simulation of nonlinear models for the compact Planar Microwave Oscillator (62x38 mm2), highly satisfactory results are obtained. Quantitatively, the measured output powers at 5.7 and 7.5 GHz are determined to be 9.5 dBm and 7.05 dBm, respectively. These power levels are particularly relevant for C band applications spanning 4 to 8 GHz, including areas such as satellite communication, radar, and wireless networks.
Citation
Hanae Elftouh, Moustapha El Bakkali, Aicha Mchbal, Soukaina Sekkal, and Naima Amar Touhami, "Low Phase Noise, High Output Power and Compact Microwave Planar Oscillator for C-Band Applications," Progress In Electromagnetics Research Letters, Vol. 117, 21-26, 2024.
doi:10.2528/PIERL23101802
References

1. Rohde, Ulrich L., Ajay K. Poddar, and Georg Böck, The Design of Modern Microwave Oscillators for Wireless Applications: Theory and Optimization, John Wiley & Sons, Jun. 2005.
doi:10.1002/0471727172

2. Rhea, Randell W., "A new class of oscillators," IEEE Microwave Magazine, Vol. 5, No. 2, 72-83, Jun. 2004.
doi:10.1109/MMW.2004.1306839

3. Van Delden, Marcel, Nils Pohl, Klaus Aufinger, Christoph Baer, and Thomas Musch, "A low-noise transmission-type Yttrium Iron Garnet tuned oscillator based on a SiGe MMIC and bond-coupling operating up to 48 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 10, 3973-3982, Oct. 2019.
doi:10.1109/TMTT.2019.2926293

4. Li, Boqiong, Yuanan Liu, Cuiping Yu, and Yongle Wu, "A novel concurrent dual-band oscillator based on a single ring resonator," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 8, 607-609, Aug. 2016.
doi:10.1109/LMWC.2016.2585567

5. Malki, Ayoub, Jamal Zbitou, Larbi El Abdellaoui, Mohamed Latrach, Abdelali Tajmouati, and Ahmed Errkik, "Design of negative resistance oscillator with rocord low phase noise," Telecommunication Computing Electronics and Control, Vol. 16, No. 2, 586-593, Apr. 2018.

6. Ramesh, Shravan, M. Nithin, and Harish M. Kittur, "Design of millimeter wave LC oscillators for 5G applications," 2019 International Conference on Communication and Signal Processing (ICCSP), 4-6, India, Apr. 2019.

7. Hu, Yizhe, Teerachot Siriburanon, and Robert Bogdan Staszewski, "A 30-GHz class-F23 oscillator in 28 nm CMOS using harmonic extraction and achieving 120 kHz 1/f3 corner," 43rd IEEE European Solid State Circuits Conference, 87-90, Leuven, Belgium, Sep. 2017.

8. Gilmore, Rowan J. and Michael B. Steer, "Nonlinear circuit analysis using the method of harmonic balance - A review of the art. Part I. Introductory concepts," International Journal of Microwave and Millimeter-wave Computer-Aided Engineering, Vol. 1, No. 1, 22-37, Jan. 1991.

9. Hajder, Tibor, "Higher order loops improve phase noise of feedback oscillators," Applied Microwave and Wireless, Vol. 14, No. 10, 24-31, 2002.

10. Rizzoli, Vittorio, Alessandra Costanzo, Diego Masotti, Alessandro Lipparini, and Franco Mastri, "Computer-aided optimization of nonlinear microwave circuits with the aid of electromagnetic simulation," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 362-377, Jan. 2004.

11. Cheng, K. M. and K. P. Chan, "Power optimization of high-efficiency microwave MESFET oscillators," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 5, 787-790, May 2000.
doi:10.1109/22.841872

12. Dyskin, Aleksey, Sandrine Wagner, and Ingmar Kallfass, "A compact resistive quadrature low noise Ka-band VCO SiGe HBT MMIC," 2019 12th German Microwave Conference (GeMiC), 95-98, Stuttgart, Germany, Mar. 2019.

13. Benakaprasad, Bhavana, Salah Sharabi, and Khaled Elgaid, "RF and microwave oscillator design using p-HEMT transistor," International Journal of Scientific and Research Publications, Vol. 4, No. 8, 1-7, 2014.

14. Jovanović, Predrag, Siniša Tasić, and Branka Jokanović, "Voltage-controlled oscillator at 6 GHz for doppler radar in heart sensing applications," Serbian Journal of Electrical Engineering, Vol. 6, No. 3, 471-478, Dec. 2009.
doi:10.2298/SJEE0903471J

15. Grebennikov, Andrei, RF and Microwave Transistor Oscillator Design, John Wiley & Sons, 2007.
doi:10.1002/9780470512098

16. El Bakkali, Moustapha, N. Amar Touhami, Hanae El Ftouh, and Abdelhafid Marroun, "Design of 5.2 GHz low noise amplifier for wireless LAN," Procedia Manufacturing, Vol. 32, 739-744, Tirgu Mures, Romania, Oct. 2019.
doi:10.1016/j.promfg.2019.02.280

17. Rollett, J., "Stability and power-gain invariants of linear twoports," IRE Transactions on Circuit Theory, Vol. 9, No. 1, 29-32, 1962.
doi:10.1109/TCT.1962.1086854

18. Platzker, Aryeh and Wayne Struble, "Rigorous determination of the stability of linear N-node circuits from network determinants and the appropriate role of the stability factor K of their reduced two-ports," Third International Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits, 93-107, Duisburg, Germany, 1994.

19. Prigent, M., M. Camiade, J. C. Nallatamby, J. Guittard, and J. Obregon, "An efficient design method of microwave oscillator circuits for minimum phase noise," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 7, 1122-1125, Jul. 1999.
doi:10.1109/22.775446