Vol. 122
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-12-12
Design of a Single-Layer C/X Dual-Band Reflectarray Antenna with Low Cross-Polarization
By
Progress In Electromagnetics Research M, Vol. 122, 21-30, 2023
Abstract
A single-layer reflectarray antenna working at C- and X-bands is designed in this paper. The proposed reflectarray element is mainly composed of three square rings. Four phase delay lines are attached to the outer ring to obtain the phase shift at C-band, and the inner two square rings are utilized to extend the phase range at X-band. The phase shift of the element reaches up to 375° and 560° at 5.9 GHz and 10.4 GHz, respectively. The cross-polarization level of the reflectarray is effectively suppressed by using a mirror symmetric element arrangement. To experimentally validate the proposed design, a center-fed dual-band prototype reflectarray with the size of 180 mm×180 mm is designed, fabricated, and tested. The measured peak gains are 16.5 dBi at 6.2 GHz and 17.1 dBi at 10.3 GHz, respectively. Besides, the measured 1-dB gain bandwidth is 9.15% (5.83-6.37 GHz) at the lower band and 3.27% (10.12-10.46 GHz) at the upper band, respectively. 16Dual-band shared aperture reflectarray and patch antenna array for s- and ka-bandsSerup, Daniel Edelgaard and Pedersen, Gert Frolund and Zhang, Shuai2340-2345SerupDaniel EdelgaardGert Frolund Pedersen, Shuai ZhangIEEE Transactions on Antennas and Propagation7023402345
Mar.2022journal10.1109/TAP.2021.31111713
Moreover, the cross polarizations at both bands are under -21 dB.
Citation
Li Liu, Yufeng Liu, Zhiyuan Yang, and Liping Han, "Design of a Single-Layer C/X Dual-Band Reflectarray Antenna with Low Cross-Polarization," Progress In Electromagnetics Research M, Vol. 122, 21-30, 2023.
doi:10.2528/PIERM23101604
References

1. Rubio, Antonio J., Abdul-Sattar Kaddour, and V. Georgakopoulos, "A mechanically rollable reflectarray with beam-scanning capabilities," IEEE Open Journal of Antennas and Propagation, Vol. 3, 1180-1190, 2022.
doi:10.1109/OJAP.2022.3214273

2. Li, Huan, Xiaokang Qi, Tianyi Zhou, Zhiwei Xu, and Tayeb A. Denidni, "Wideband reconfigurable reflectarray based on reflector-backed second-order bandpass frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 12, 12334-12339, Dec. 2022.
doi:10.1109/TAP.2022.3209684

3. Wu, Wen, Kai-Da Xu, Qiang Chen, Toru Tanaka, Masaki Kozai, and Hiroya Minami, "A wideband reflectarray based on single-layer magneto-electric dipole elements with 1-bit switching mode," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 12, 12346-12351, Dec. 2022.
doi:10.1109/TAP.2022.3209693

4. Su, Tao, Xiangjie Yi, and Bian Wu, "X/ku dual-band single-layer reflectarray antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 2, 338-342, Feb. 2019.
doi:10.1109/LAWP.2018.2890766

5. Nayeri, P., F. Yang, and A. Z. Elsherbeni, Reflectarray Antennas: Theory, Designs and Applications, Wiley, New York, NY, USA, 2018.
doi:10.1002/9781118846728

6. Abdollahvand, Mousa, Keyvan Forooraghi, Jose. A. Encinar, Zahra Atlasbaf, and Eduardo Martinez-de-Rioja, "A 20/30 GHz reflectarray backed by FSS for shared aperture Ku/Ka-band satellite communication antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 4, 566-570, Apr. 2020.
doi:10.1109/LAWP.2020.2972024

7. Xu, Peng, Long Li, Ruijie Li, and Haixia Liu, "Dual-circularly polarized spin-decoupled reflectarray with FSS-back for independent operating at Ku-/Ka-bands," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 7041-7046, Oct. 2021.
doi:10.1109/TAP.2021.3076518

8. Deng, Ruyuan, Fan Yang, Shenheng Xu, and Maokun Li, "An FSS-backed 20/30-GHz dual-band circularly polarized reflectarray with suppressed mutual coupling and enhanced performance," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 926-931, Feb. 2017.
doi:10.1109/TAP.2016.2633159

9. Li, Wentao, Yiming Wang, Shunlai Sun, and Xiaowei Shi, "An FSS-backed reflection/transmission reconfigurable array antenna," IEEE Access, Vol. 8, 23904-23911, 2020.
doi:10.1109/ACCESS.2020.2970611

10. Zhong, Xianjiang, He-Xiu Xu, Lei Chen, Wentao Li, Hao Wang, and Xiaowei Shi, "An FSS-backed broadband phase-shifting surface array with multimode operation," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 5974-5981, Sep. 2019.
doi:10.1109/TAP.2019.2916747

11. Tahseen, Muhammad M. and Ahmed A. Kishk, "Flexible and portable textile-reflectarray backed by frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 46-49, Jan. 2018.
doi:10.1109/LAWP.2017.2772919

12. Kong, Gexing, Xiangqiang Li, Qingfeng Wang, and Jianqiong Zhang, "A dual-band circularly polarized elliptical patch reflectarray antenna for high-power microwave applications," IEEE Access, Vol. 9, 74522-74530, 2021.
doi:10.1109/ACCESS.2021.3080823

13. Farias, Roger L., Custodio Peixeiro, and Marcos V. T. Heckler, "Single-layer dual-band dual-circularly polarized reflectarray for space communication," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5989-5994, Jul. 2022.
doi:10.1109/TAP.2022.3161552

14. Thiruvoth, D. V., A. A. B. Raj, B. P. Kumar, V. S. Kumar, and R. D. Gupta, "Dual-band shared-aperture reflectarray antenna element at ku-band for the TT&C application of a geostationary satellite," 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), 361-364, 2019.

15. Costanzo, Sandra, Francesca Venneri, Antonio Borgia, and Giuseppe Di Massa, "Dual-band dual-linear polarization reflectarray for mmWaves/5G applications," IEEE Access, Vol. 8, 78183-78192, 2020.
doi:10.1109/ACCESS.2020.2989581

16. Serup, Daniel Edelgaard, Gert Frolund Pedersen, and Shuai Zhang, "Dual-band shared aperture reflectarray and patch antenna array for S- and Ka-bands," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 2340-2345, Mar. 2022.
doi:10.1109/TAP.2021.3111171