Vol. 178
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-12-08
Generalized Phase Retrieval Model Based on Physics-Inspired Network for Holographic Metasurface (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 178, 103-110, 2023
Abstract
Phase holographic metasurfaces encode the phase profiles of holograms in metasurfaces formed by the meta-atom arrays, and accurately modulate the field distribution in desired region. Iterative optimization methods or data-driven learning methods are used to retrieve the phase profile under the given physical setups, such as working wavelength λ, metasurfaces' period ∆x, and image distance Z. However, those methods usually repeat the optimization or training process to retrieve the phase profile for different physical setups. Here, we propose a generalized phase retrieval model (GPRM) based on physics-inspired network to retrieve the phase profile from the input λ, ∆x, Z, and desired image without retraining the neural network. The GPRM consists of deep neural network (DNN), parabolic phase, and Fresnel diffraction propagation, which is able to generate phase profile with high reconstruction quality in extraordinary broadband, such as visible, terahertz, and microwave region. By combining with corresponding meta-atom pool, the proposed method has great potential to design versatile meta-devices for image display, data encoding, and beam shaping. Furthermore, the proposed method accelerates the design of Fresnel phase hologram, which can cooperate with programmable metasurfaces to realize dynamic three-dimensional or full-color display.
Citation
Lei Jin, Jialei Xie, Baicao Pan, and Guoqing Luo, "Generalized Phase Retrieval Model Based on Physics-Inspired Network for Holographic Metasurface (Invited Paper)," Progress In Electromagnetics Research, Vol. 178, 103-110, 2023.
doi:10.2528/PIER23100604
References

1. Yu, Nanfang, Patrice Genevet, Mikhail A. Kats, Francesco Aieta, Jean-Philippe Tetienne, Federico Capasso, and Zeno Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, Oct. 21 2011.
doi:10.1126/science.1210713

2. Qiu, Cheng-Wei, Tan Zhang, Guangwei Hu, and Yuri Kivshar, Quo vadis, metasurfaces?, Vol. 21, No. 13, 5461--5474 Acs Publications, 2021.

3. Wu, Nanxuan, Yiyun Zhang, Hongbin Ma, Hongsheng Chen, and Haoliang Qian, "Tunable high-Q plasmonic metasurface with multiple surface lattice resonances," Progress In Electromagnetics Research, Vol. 172, 23-32, 2021.
doi:10.2528/PIER21112006

4. Li, Lianlin, Hanting Zhao, Che Liu, Long Li, and Tie Jun Cui, "Intelligent metasurfaces: control, communication and computing," Elight, Vol. 2, No. 1, 2022.

5. Dong, Zhaogang, Jinfa Ho, Ye Feng Yu, Yuan Hsing Fu, Ramon Paniagua-Dominguez, Sihao Wang, Arseniy I. Kuznetsov, and Joel K. W. Yang, "Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space," Nano Letters, Vol. 17, No. 12, 7620-7628, Dec. 2017.
doi:10.1021/acs.nanolett.7b03613

6. Song, Maowen, Lei Feng, Pengcheng Huo, Mingze Liu, Chunyu Huang, Feng Yan, Yan-qing Lu, and Ting Xu, "Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface," Nature Nanotechnology, Vol. 18, No. 1, 71, Jan. 2023.
doi:10.1038/s41565-022-01256-4

7. Huang, Lingling, Xianzhong Chen, Holger Muehlenbernd, Guixin Li, Benfeng Bai, Qiaofeng Tan, Guofan Jin, Thomas Zentgraf, and Shuang Zhang, "Dispersionless phase discontinuities for controlling light propagation," Nano Letters, Vol. 12, No. 11, 5750-5755, Nov. 2012.
doi:10.1021/nl303031j

8. Liu, Mingze, Wenqi Zhu, Pengcheng Huo, Lei Feng, Maowen Song, Cheng Zhang, Lu Chen, Henri J. Lezec, Yanqing Lu, Amit Agrawal, and Ting Xu, "Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states," Light-science $&$ Applications, Vol. 10, No. 1, May 25 2021.
doi:10.1038/s41377-021-00552-3

9. Yang, Hui, Yuting Jiang, Yueqiang Hu, Kai Ou, and Huigao Duan, "Noninterleaved metasurface for full-polarization three-dimensional vectorial holography," Laser $&$ Photonics Reviews, Vol. 16, No. 11, Nov. 2022.
doi:10.1002/lpor.202200351

10. Wu, Pin Chieh, Wei-Yi Tsai, Wei Ting Chen, Yao-Wei Huang, Ting-Yu Chen, Jia-Wern Chen, Chun Yen Liao, Cheng Hung Chu, Greg Sun, and Din Ping Tsai, "Versatile polarization generation with an aluminum plasmonic metasurface," Nano Letters, Vol. 17, No. 1, 445-452, Jan. 2017.
doi:10.1021/acs.nanolett.6b04446

11. Li, Lin, Zexuan Liu, Xifeng Ren, Shuming Wang, Vin-Cent Su, Mu-Ku Chen, Cheng Hung Chu, Hsin Yu Kuo, Biheng Liu, Wenbo Zang, Guangcan Guo, Lijian Zhang, Zhenlin Wang, Shining Zhu, and Din Ping Tsai, "Metalens-array-based high-dimensional and multiphoton quantum source," Science, Vol. 368, No. 6498, 1487, Jun. 26 2020.
doi:10.1126/science.aba9779

12. Overvig, Adam C., Sander A. Mann, and Andrea Alu, "Thermal metasurfaces: complete emission control by combining local and nonlocal light-matter interactions," Physical Review X, Vol. 11, No. 2, Jun. 4 2021.
doi:10.1103/PhysRevX.11.021050

13. Li, Zhipeng, Guangtao Cao, Chenhui Li, Shaohua Dong, Yan Deng, Xinke Liu, John S. Ho, and Cheng-Wei Qiu, "Non-hermitian electromagnetic metasurfaces at exceptional points," Progress In Electromagnetics Research, Vol. 171, 1-20, 2021.

14. Ni, Yibo, Chen Chen, Shun Wen, Xinyuan Xue, Liqun Sun, and Yuanmu Yang, "Computational spectropolarimetry with a tunable liquid crystal metasurface," Elight, Vol. 2, No. 1, Nov. 4 2022.
doi:10.1186/s43593-022-00032-0

15. Tittl, Andreas, Aleksandrs Leitis, Mingkai Liu, Filiz Yesilkoy, Duk-Yong Choi, Dragomir N. Neshev, Yuri S. Kivshar, and Hatice Altug, "Imaging-based molecular barcoding with pixelated dielectric metasurfaces," Science, Vol. 360, No. 6393, 1105, Jun. 8 2018.
doi:10.1126/science.aas9768

16. Pahlevaninezhad, Hamid, Mohammadreza Khorasaninejad, Yao-Wei Huang, Zhujun Shi, Lida P. Hariri, David C. Adams, Vivien Ding, Alexander Zhu, Cheng-Wei Qiu, Federico Capasso, and Melissa J. Suter, "Nano-optic endoscope for high-resolution optical coherence tomography in vivo," Nature Photonics, Vol. 12, No. 9, 540, Sep. 2018.
doi:10.1038/s41566-018-0224-2

17. Cordaro, Andrea, Hoyeong Kwon, Dimitrios Sounas, A. Femius Koenderink, Andrea Alu, and Albert Polman, "High-index dielectric metasurfaces performing mathematical operations," Nano Letters, Vol. 19, No. 12, 8148-8423, Dec. 2019.
doi:10.1021/acs.nanolett.9b02477

18. Huang, Lingling, Shuang Zhang, and Thomas Zentgraf, "Metasurface holography: From fundamentals to applications," Nanophotonics, Vol. 7, No. 6, SI, 1169-1190, Jun. 2018.
doi:10.1515/nanoph-2017-0118

19. Dong, Zhaogang, Lei Jin, Soroosh Daqiqeh Rezaei, Hao Wang, Yang Chen, Febiana Tjiptoharsono, Jinfa Ho, Sergey Gorelik, Ray Jia Hong Ng, Qifeng Ruan, Cheng-Wei Qiu, and Joel K. W. Yang, "Schrodinger's red pixel by quasi-bound-states-in-the-continuum," Science Advances, Vol. 8, No. 8, Feb. 2022.
doi:10.1126/sciadv.abm4512

20. Huang, Kun, Hong Liu, Francisco J. Garcia-Vidal, Minghui Hong, Boris Luk'yanchuk, Jinghua Teng, and Cheng-Wei Qiu, "Ultrahigh-capacity non-periodic photon sieves operating in visible light," Nature Communications, Vol. 6, May 2015.
doi:10.1038/ncomms8059

21. Ren, Haoran, Xinyuan Fang, Jaehyuck Jang, Johannes Buerger, Junsuk Rho, and Stefan A. Maier, "Complex-amplitude metasurface-based orbital angular momentum holography in momentum space," Nature Nanotechnology, Vol. 15, No. 11, 948, Nov. 2020.
doi:10.1038/s41565-020-0768-4

22. Li, Chi, Jaehyuck Jang, Trevon Badloe, Tieshan Yang, Joohoon Kim, Jaekyung Kim, Minh Nguyen, Stefan A Maier, Junsuk Rho, Haoran Ren, and others, "Arbitrarily structured quantum emission with a multifunctional metalens," Elight, Vol. 3, No. 1, 19, 2023.

23. Jin, Lei, Yao-Wei Huang, Zhongwei Jin, Robert C. Devlin, Zhaogang Dong, Shengtao Mei, Menghua Jiang, Wei Ting Chen, Zhun Wei, Hong Liu, Jinghua Teng, Aaron Danner, Xiangping Li, Shumin Xiao, Shuang Zhang, Changyuan Yu, Joel K. W. Yang, Federico Capasso, and Cheng-Wei Qiu, "Dielectric multi-momentum meta-transformer in the visible," Nature Communications, Vol. 10, Oct. 21 2019.
doi:10.1038/s41467-019-12637-0

24. Jin, Lei, Zhaogang Dong, Shengtao Mei, Ye Feng Yu, Zhun Wei, Zhenying Pan, Soroosh Daqiqeh Rezaei, Xiangping Li, Arseniy I. Kuznetsov, Yuri S. Kivshar, Joel K. W. Yang, and Cheng-Wei Qiu, "Noninterleaved metasurface for (26-1) spin- and wavelength-encoded holograms," Nano Letters, Vol. 18, No. 12, 8016-8024, Dec. 2018.
doi:10.1021/acs.nanolett.8b04246

25. Javidi, Bahram, Artur Carnicer, Arun Anand, George Barbastathis, Wen Chen, Pietro Ferraro, J. W. Goodman, Ryoichi Horisaki, Kedar Khare, Malgorzata Kujawinska, Rainer A. Leitgeb, Pierre Marquet, Takanori Nomura, Aydogan Ozcan, YongKeun Park, Giancarlo Pedrini, Pascal Picart, Joseph Rosen, Genaro Saavedra, Natan T. Shaked, Adrian Stern, Enrique Tajahuerce, Lei Tian, Gordon Wetzstein, and Masahiro Yamaguchi, "Roadmap on digital holography," Optics Express, Vol. 29, No. 22, 35078-35118, Oct. 25 2021.
doi:10.1364/OE.435915

26. Zhang, Deyue, Yukun Guo, Fenglin Sun, and Hongyu Liu, "Unique determinations in inverse scattering problems with phaseless near-field measurements," Inverse Problems and Imaging, Vol. 14, No. 3, 569-582, Jun. 2020.
doi:10.3934/ipi.2020026

27. Zhang, Deyue, Yukun Guo, Jingzhi Li, and Hongyu Liu, "Retrieval of acoustic sources from multi-frequency phaseless data," Inverse Problems, Vol. 34, No. 9, Sep. 2018.
doi:10.1088/1361-6420/aaccda

28. Yin, Weishi, Wenhong Yang, and Hongyu Liu, "A neural network scheme for recovering scattering obstacles with limited phaseless far-field data," Journal of Computational Physics, Vol. 417, Sep. 15 2020.
doi:10.1016/j.jcp.2020.109594

29. Gerchberg, Ralph W. and W. O. Saxton, "A practical algorithm for the determination of plane from image and diffraction pictures," Optik, Vol. 35, No. 2, 237--246, 1972.

30. Ma, Wei, Yihao Xu, Bo Xiong, Lin Deng, Ru-Wen Peng, Mu Wang, and Yongmin Liu, "Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning," Advanced Materials, Vol. 34, No. 16, Apr. 2022.
doi:10.1002/adma.202110022

31. Shimobaba, Tomoyoshi, David Blinder, Tobias Birnbaum, Ikuo Hoshi, Harutaka Shiomi, Peter Schelkens, and Tomoyoshi Ito, "Deep-learning computational holography: A review," Frontiers in Photonics, Vol. 3, 2022.

32. Liu, Kexuan, Jiachen Wu, Zehao He, and Liangcai Cao, "4K-dmdnet: diffraction model-driven network for 4K computer-generated holography," Opto-electronic Advances, Vol. 6, No. 5, 2023.
doi:10.29026/oea.2023.220135

33. Zou, Yijun, Rongrong Zhu, Lian Shen, and Bin Zheng, "Reconfigurable metasurface hologram of dynamic distance via deep learning," Frontiers in Materials, Vol. 9, May 20 2022.
doi:10.3389/fmats.2022.907672

34. Li, Rujia, Giancarlo Pedrini, Zhengzhong Huang, Stephan Reichelt, and Liangcai Cao, "Physics-enhanced neural network for phase retrieval from two diffraction patterns," Optics Express, Vol. 30, No. 18, 32680-32692, Aug. 29 2022.
doi:10.1364/OE.469080

35. Peng, Yifan, Suyeon Choi, Nitish Padmanaban, Jonghyun Kim, and Gordon Wetzstein, "Neural holography," ACM Siggraph 2020 Emerging Technologies, Electr Network, Aug 17-2 2020.
doi:10.1145/3388534.3407295

36. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox, "U-net: convolutional networks for biomedical image segmentation," Medical Image Computing and Computer-assisted Intervention, Pt Iii, Vol. 9351, 234-241, Munich, Germany, Oct. 05-09 2015.
doi:10.1007/978-3-319-24574-4_28

37. Wei, Zhun and Xudong Chen, "Physics-inspired convolutional neural network for solving full-wave inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6138-6148, Sep. 2019.
doi:10.1109/TAP.2019.2922779

38. Gong, Dawei, Tengfei Ma, Julian Evans, and Sailing He, "Deep neural networks for image super-resolution in optical microscopy by using modified hybrid task cascade u-net," Progress In Electromagnetics Research, Vol. 171, 185-199, 2021.
doi:10.2528/PIER21110904

39. Goodman, Joseph W, Introduction to Fourier Optics, Roberts and Company Publishers, 2005.

40. Makey, Ghaith, Ozgun Yavuz, Denizhan K. Kesim, Ahmet Turnali, Parviz Elahi, Serim Ilday, Onur Tokel, and F. Omer Ilday, "Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors," Nature Photonics, Vol. 13, No. 4, 251, Apr. 2019.
doi:10.1038/s41566-019-0393-7

41. Zhang, Yixin, Mingkun Zhang, Kexuan Liu, Zehao He, and Liangcai Cao, "Progress of the computer-generated holography based on deep learning," Applied Sciences, Vol. 12, No. 17, Sep. 2022.
doi:10.3390/app12178568

42. Voelz, David G. and Michael C. Roggemann, "Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences," Applied Optics, Vol. 48, No. 32, 6132-6142, Nov. 10 2009.
doi:10.1364/AO.48.006132