Vol. 113
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-10-12
Facile Synthesis, Kinetics and Photocatalytic Study of Ultrasmall Aluminum Nanoparticles
By
Progress In Electromagnetics Research Letters, Vol. 113, 7-15, 2023
Abstract
Ultrasmall nanoparticles with tunable photo-optical properties and colloidal nature are ideal for a wide range of photocatalytic reaction. Herein, we reported the facile synthesis of ultrasmall aluminum nanoparticles (AlNPs), which exhibited unique UV-B photoluminescence and excitation wavelength dependent fluorescence characteristic. Spherical aberration-corrected scanning transmission electron microscope (ACTEM) and X-ray photoelectron spectroscopy (XPS) were used to study the microstructure and verify the successful synthesis of AlNPs. Time-resolved photoluminescence spectroscopy was employed to gain insight into the unique photoluminescence behavior. The photocatalytic activity of ultrasmall AlNPs was evaluated by the photoreduction of resazurin (RZ) to resorufin (RF) under UV light irradiation. This photodegradation of RZ obeyed the pseudo-first-order reaction kinetics with reaction rate achieved 6.62 × 10-2 min-1. Our study suggested that the prepared ultrasmall AlNPs have a great potential application in photocatalytic field.
Citation
Hao Wu, Rongrong Zhu, Sichao Du, Hao Xie, and Jun Hu, "Facile Synthesis, Kinetics and Photocatalytic Study of Ultrasmall Aluminum Nanoparticles," Progress In Electromagnetics Research Letters, Vol. 113, 7-15, 2023.
doi:10.2528/PIERL23091806
References

1. Zhu, M., C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, "Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties," Journal of the American Chemical Society, Vol. 130, No. 18, 5883-5885, May 1, 2008.
doi:10.1021/ja801173r

2. Duan, H. and S. Nie, "Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters," Journal of the American Chemical Society, Vol. 129, No. 9, 2412-2413, Mar. 1, 2007.
doi:10.1021/ja067727t

3. Zhou, C., G. Hao, P. Thomas, J. Liu, M. Yu, S. Sun, O. K. Oz, X. Sun, and J. Zheng, "Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics," Angewandte Chemie International Edition, Vol. 51, No. 40, 10118-10122, Oct. 1, 2012.
doi:10.1002/anie.201203031

4. Zeng, C., T. Li, A. Das, N. L. Rosi, and R. Jin, "Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography," Journal of the American Chemical Society, Vol. 135, No. 27, 10011-10013, Jul. 10, 2013.
doi:10.1021/ja404058q

5. Kim, B. H., N. Lee, H. Kim, K. An, Y. I. Park, Y. Choi, K. Shin, Y. Lee, S. G. Kwon, H. B. Na, J.-G. Park, T.-Y. Ahn, Y.-W. Kim, W. K. Moon, S. H. Choi, and T. Hyeon, "Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents," Journal of the American Chemical Society, Vol. 133, No. 32, 12624-12631, Aug. 17, 2011.
doi:10.1021/ja203340u

6. Shellaiah, M., K. Awasthi, S. Chandran, B. Aazaad, K. W. Sun, N. Ohta, S.-P. Wu, and M.-C. Lin, "Methylammonium tin tribromide quantum dots for heavy metal ion detection and cellular imaging," ACS Applied Nano Materials, Vol. 5, No. 2, 2859-2874, Feb. 25, 2022.
doi:10.1021/acsanm.2c00028

7. Wang, N., Q. Sun, and J. Yu, "Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: A fascinating class of nanocatalysts," Advanced Materials, Vol. 31, No. 1, 1803966, Jan. 1, 2019.
doi:10.1002/adma.201803966

8. Liu, Z., Z. Wu, Q. Yao, Y. Cao, O. J. H. Chai, and J. Xie, "Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications," Nano Today, Vol. 36, 101053, Feb. 1, 2021.

9. Ma, Z., Y. Zhang, J. Zhang, W. Zhang, M. F. Foda, X. Dai, and H. Han, "Ultrasmall peptide-coated platinum nanoparticles for precise NIR-II photothermal therapy by mitochondrial targeting," ACS Applied Materials & Interfaces, Vol. 12, No. 35, 39434-39443, Sep. 2, 2020.
doi:10.1021/acsami.0c11469

10. Jin, R., C. Zeng, M. Zhou, and Y. Chen, "Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities," Chemical Reviews, Vol. 116, No. 18, 10346-10413, Sep. 28, 2016.
doi:10.1021/acs.chemrev.5b00703

11. Liang, H., B.-J. Liu, B. Tang, S.-C. Zhu, S. Li, X.-Z. Ge, J.-L. Li, J.-R. Zhu, and F.-X. Xiao, "Atomically precise metal nanocluster-mediated photocatalysis," ACS Catalysis, Vol. 12, No. 7, 4216-4226, Apr. 1, 2022.
doi:10.1021/acscatal.2c00841

12. Kawawaki, T., Y. Kataoka, M. Hirata, Y. Akinaga, R. Takahata, K. Wakamatsu, Y. Fujiki, M. Kataoka, S. Kikkawa, A. S. Alotabi, S. Hossain, D. J. Osborn, T. Teranishi, G. G. Andersson, G. F. Metha, S. Yamazoe, and Y. Negishi, "Creation of high-performance heterogeneous photocatalysts by controlling ligand desorption and particle size of gold nanocluster," Angewandte Chemie International Edition, Vol. 60, No. 39, 21340-21350, Sep. 20, 2021.
doi:10.1002/anie.202104911

13. Christopher, P., H. Xin, A. Marimuthu, and S. Linic, "Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures," Nature Materials, Vol. 11, No. 12, 1044-1050, Dec. 1, 2012.
doi:10.1038/nmat3454

14. Honda, M., Y. Kumamoto, A. Taguchi, Y. Saito, and S. Kawata, "Plasmon-enhanced UV photocatalysis," Applied Physics Letters, Vol. 104, No. 6, 2014.
doi:10.1063/1.4864395

15. Knight, M. W., N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, "Aluminum for plasmonics," ACS Nano, Vol. 8, No. 1, 834-840, Jan. 28, 2014.
doi:10.1021/nn405495q

16. Wu, H., X. Cheng, S. Xie, Y. Huang, R. A. Janjua, X. Liu, and S. He, "Aluminum quantum dots with surface controlled blue-UV photoluminescence," The Journal of Physical Chemistry C, Vol. 127, No. 5, 2687-2693, Feb. 9, 2023.
doi:10.1021/acs.jpcc.2c08441

17. Douglas-Gallardo, O. A., G. J. Soldano, M. M. Mariscal, and C. G. Snchez, "Effects of oxidation on the plasmonic properties of aluminum nanoclusters," Nanoscale, Vol. 9, No. 44, 17471-17480, 2017.
doi:10.1039/C7NR04904H

18. Makula, P., M. Pacia, and W. Macyk, "How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra," The Journal of Physical Chemistry Letters, Vol. 9, No. 23, 6814-6817, Dec. 6, 2018.
doi:10.1021/acs.jpclett.8b02892

19. Schaaff, T. G., G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, "Isolation and selected properties of a 10.4 kDa Gold: Glutathione cluster compound," The Journal of Physical Chemistry B, Vol. 102, No. 52, 10643-10646, Dec. 1, 1998.
doi:10.1021/jp9830528

20. Kasha, M., "Characterization of electronic transitions in complex molecules," Discussions of the Faraday Society, Vol. 9, No. 0, 14-19, 1950.
doi:10.1039/df9500900014

21. Diez, I., R. H. A. Ras, M. I. Kanyuk, and A. P. Demchenko, "On heterogeneity in fluorescent few-atom silver nanoclusters," Physical Chemistry Chemical Physics, Vol. 15, No. 3, 979-985, 2013.
doi:10.1039/C2CP43045B

22. Zhou, M., S. Long, X. Wan, Y. Li, Y. Niu, Q. Guo, Q.-M. Wang, and A. Xia, "Ultrafast relaxation dynamics of phosphine-protected, rod-shaped Au20 clusters: interplay between solvation and surface trapping," Physical Chemistry Chemical Physics, Vol. 16, No. 34, 18288-18293, 2014.
doi:10.1039/C4CP02336F

23. Wen, X., P. Yu, Y.-R. Toh, X. Ma, S. Huang, and J. Tang, "Fluorescence origin and spectral broadening mechanism in atomically precise Au8 nanoclusters," Nanoscale, Vol. 5, No. 21, 10251-10257, 2013.
doi:10.1039/c3nr03015f

24. Zhou, M. and R. Jin, "Optical properties and excited-state dynamics of atomically precise gold nanoclusters," Annual Review of Physical Chemistry, Vol. 72, No. 1, 121-142, Apr. 20, 2021.
doi:10.1146/annurev-physchem-090419-104921

25. Ning, J., et al., "Synthesis and structural properties of AlCNO composite thin films," Thin Solid Films, Vol. 385, No. 1, 55-60, Apr. 2, 2001.

26. Ricci, M., M. Trinquecoste, F. Auguste, R. Canet, P. Delhaes, C. Guimon, G. Pfister-Guillouzo, B. Nysten, and J. P. Issi, "Relationship between the structural organization and the physical properties of PECVD nitrogenated carbons," Journal of Materials Research, Vol. 8, No. 3, 480-488, Mar. 1, 1993.
doi:10.1557/JMR.1993.0480

27. Liu, Z., X. Jing, S. Zhang, and Y. Tian, "A copper nanocluster-based fluorescent probe for real- time imaging and ratiometric biosensing of calcium ions in neurons," Analytical Chemistry, Vol. 91, No. 3, 2488-2497, Feb. 5, 2019.
doi:10.1021/acs.analchem.8b05360

28. Panayotov, D. A. and J. R. Morris, "Thermal decomposition of a chemical warfare agent simulant (DMMP) on TiO2: Adsorbate reactions with lattice oxygen as studied by infrared spectroscopy," The Journal of Physical Chemistry C, Vol. 113, No. 35, 15684-15691, Sep. 3, 2009.
doi:10.1021/jp9036233

29. Abuelela, A. M., T. A. Mohamed, and O. V. Prezhdo, "DFT simulation and vibrational analysis of the IR and raman spectra of a CdSe quantum dot capped by methylamine and trimethylphosphine oxide ligands," The Journal of Physical Chemistry C, Vol. , No. , {, Vol. 116, No. 27, 14674-14681, Jul. 12, 2012.
doi:10.1021/jp303275v

30. Koninti, R. K., S. Satpathi, and P. Hazra, "Ultrafast fluorescence dynamics of highly stable copper nanoclusters synthesized inside the aqueous nanopool of reverse micelles," The Journal of Physical Chemistry C, Vol. 122, No. 10, 5742-5752, Mar. 15, 2018.
doi:10.1021/acs.jpcc.7b11457

31. Zhou, M. and Y. Song, "Origins of visible and near-infrared emissions in [Au25(SR)18]-nanoclusters," The Journal of Physical Chemistry Letters, Vol. 12, No. 5, 1514-1519, Feb. 11, 2021.
doi:10.1021/acs.jpclett.1c00120

32. Mills, A., J. Johnston, and C. O'Rourke, "Photocatalyst activity indicator inks, paiis, for assessing self-cleaning films," Accounts of Materials Research, Vol. 3, No. 1, 67-77, Jan. 28, 2022.
doi:10.1021/accountsmr.1c00196

33. Krishnamoorthy, K., R. Mohan, and S. J. Kim, "Graphene oxide as a photocatalytic material," Applied Physics Letters, Vol. 98, No. 24, 244101, 2011.
doi:10.1063/1.3599453