Vol. 122
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-12-14
An Ultra-Wideband MIMO Antenna Based on Dual-Mode Transmission Line Feeding for Wireless Communication
By
Progress In Electromagnetics Research M, Vol. 122, 73-83, 2023
Abstract
An ultra-wideband (UWB) MIMO antenna based on dual mode transmission line feeding for wireless communication is proposed in this article. The general method of realizing a UWB MIMO antenna is using different shapes of monopoles acting as a MIMO antenna element, while the ultra-wideband character of the proposed MIMO antenna is mainly obtained by the use of a dual-mode transmission line in the coplanar waveguide (CPW) feeding line, which offers a novel method. The proposed MIMO antenna element is a rose-shaped monopole fed by a CPW feeding line. Compared to the traditional monopole, a rose-shaped monopole can introduce several extra resonant frequencies, and the impedance bandwidth can be improved. Besides, a dual-mode transmission line (DMTL) is introduced by adding specific stubs to the CPW feeding line. Arranging the stubs at the half wavelengths of the desired frequencies, mode transformation can be accomplished, and additional resonant modes can be generated. As a result, the impedance bandwidth can be further broadened. Results show that the fractional impedance bandwidth of the proposed UWB antenna element is 165.5% (2.59 GHz to 26.61 GHz). Then, the UWB antenna is applied to design a 4-element MIMO antenna. By loading four u-typed decoupling structures at the center of the MIMO antenna, the port-to-port isolation of the MIMO antenna can be increased to 20 dB within a wide bandwidth, especially 25.3 dB at the higher band (14-25 GHz). The proposed UWB MIMO antenna is manufactured and tested. Experimental results show that the impedance bandwidth covers 2.40 GHz to 25 GHz (165%). The diversity gain (DG) of the antenna in the operating band is about 10; the envelope correlation coefficient (ECC) is less than 0.002; and the radiation efficiency ranges from 85% to 95% in the whole working band. The design is a preferable candidate for MIMO systems.
Citation
Xianjing Lin, Gengtao Huang, and Yao Zhang, "An Ultra-Wideband MIMO Antenna Based on Dual-Mode Transmission Line Feeding for Wireless Communication," Progress In Electromagnetics Research M, Vol. 122, 73-83, 2023.
doi:10.2528/PIERM23091406
References

1. Staderini, EM, "UWB radars in medicine," IEEE Aerospace and Electronic Systems Magazine, Vol. 17, No. 1, 13-18, Jan. 2002.
doi:10.1109/62.978359

2. Zhang, Jinyun, Philip V. Orlik, Zafer Sahinoglu, Andreas F. Molisch, and Patrick Kinney, "UWB systems for wireless sensor networks," Proceedings of The IEEE, Vol. 97, No. 2, SI, 313-331, Feb. 2009.
doi:10.1109/JPROC.2008.2008786

3. Alsath, M. Gulam Nabi and Malathi Kanagasabai, "Compact UWB monopole antenna for automotive communications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4204-4208, Sep. 2015.
doi:10.1109/TAP.2015.2447006

4. Ahmad, Sarosh, Umer Ijaz, Salman Naseer, Adnan Ghaffar, Muhammad Awais Qasim, Faisal Abrar, Naser Ojaroudi Parchin, Chan Hwang See, and Raed Abd-Alhameed, "A jug-shaped CPW-fed ultra-wideband printed monopole antenna for wireless communications networks," Applied Sciences-basel, Vol. 12, No. 2, Jan. 2022.
doi:10.3390/app12020821

5. Khan, Muhammad S., Syed A. Naqvi, Adnan Iftikhar, Sajid M. Asif, Adnan Fida, and Raed M. Shubair, "A WLAN band-notched compact four element UWB MIMO antenna," International Journal of Rf and Microwave Computer-aided Engineering, Vol. 30, No. 9, Sep. 2020.
doi:10.1002/mmce.22282

6. Huang, Jianlin, Guiting Dong, Jing Cai, Han Li, and Gui Liu, "A quad-port dual-band MIMO antenna array for 5G smartphone applications," Electronics, Vol. 10, No. 5, 542, 2021.

7. Li, Rongqiang, Zixu Mo, Haoran Sun, Xiaofeng Sun, and Guohong Du, "A low-profile and high-isolated MIMO antenna for 5G mobile terminal," Micromachines, Vol. 11, No. 4, Apr. 2020.
doi:10.3390/mi11040360

8. Sehrai, Daniyal Ali, Mujeeb Abdullah, Ahsan Altaf, Saad Hassan Kiani, Fazal Muhammad, Muhammad Tufail, Muhammad Irfan, Adam Glowacz, and Saifur Rahman, "A novel high gain wideband MIMO antenna for 5G millimeter wave applications," Electronics, Vol. 9, No. 6, 1031, 2020.

9. Radhi, Alaa H, R Nilavalan, Yi Wang, HS Al-Raweshidy, Amira A Eltokhy, and Nur Ab Aziz, "Mutual coupling reduction with a wideband planar decoupling structure for UWB-MIMO antennas," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 10, 1143-1154, 2018.

10. Rekha, Vutukuri Sarvani Duti, Pokkunuri Pardhasaradhi, Boddapati Taraka Phani Madhav, and Yalavarthi Usha Devi, "Dual band notched orthogonal 4-element MIMO antenna with isolation for UWB applications," IEEE Access, Vol. 8, 145871-145880, 2020.
doi:10.1109/ACCESS.2020.3015020

11. Khan, Muhammad S., Adnan Iftikhar, Raed M. Shubair, Antonio D. Capobianco, Benjamin D. Braaten, and Dimitris E. Anagnostou, "A four element, planar, compact UWB MIMO antenna with WLAN band rejection capabilities," Microwave and Optical Technology Letters, Vol. 62, No. 10, 3124-3131, Oct. 2020.
doi:10.1002/mop.32427

12. Wu, Wenjing, Bo Yuan, and Aiting Wu, "A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling based on EBG structures," International Journal of Antennas and Propagation, Vol. 2018, 2018.
doi:10.1155/2018/8490740

13. Desai, Arpan, Jayshri Kulkarni, M. M. Kamruzzaman, Stepan Hubalovsky, Heng-Tung Hsu, and Ahmed A. Ibrahim, "Interconnected CPW fed flexible 4-port MIMO antenna for UWB, X, and Ku band applications," IEEE Access, Vol. 10, 57641-57654, 2022.
doi:10.1109/ACCESS.2022.3179005

14. Ahmad, Sarosh, Shahid Khan, Bilal Manzoor, Mohammad Soruri, Mohammad Alibakhshikenari, Mariana Dalarsson, and Francisco Falcone, "A compact CPW-fed ultra-wideband multi-input-multi-output (MIMO) antenna for wireless communication networks," IEEE Access, Vol. 10, 25278-25289, 2022.
doi:10.1109/ACCESS.2022.3155762

15. Sharma, Preeti, Rakesh N. Tiwari, Prabhakar Singh, Pradeep Kumar, and Binod K. Kanaujia, "MIMO antennas: design approaches, techniques and applications," Sensors, Vol. 22, No. 20, Oct. 2022.
doi:10.3390/s22207813

16. Ravi, Kiran Chand and Jayendra Kumar, "Miniaturized parasitic loaded high-isolation MIMO antenna for 5G applications," Sensors, Vol. 22, No. 19, Oct. 2022.
doi:10.3390/s22197283

17. Nej, Sanjukta, Anumoy Ghosh, Sarosh Ahmad, Adnan Ghaffar, and Mousa Hussein, "Compact quad band MIMO antenna design with enhanced gain for wireless communications," Sensors, Vol. 22, No. 19, Oct. 2022.
doi:10.3390/s22197143

18. Wen, C. P., "Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, Vol. MT17, No. 12, 1087-1090, 1969.
doi:10.1109/TMTT.1969.1127105

19. Ma, K. P., YX Qian, and T Itoh, "Analysis and applications of a new CPW-slotline transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 4, 426-432, Apr. 1999.
doi:10.1109/22.754876

20. Wu, Ming-Dong, Sheng-Ming Deng, Ruey-Beei Wu, and Powen Hsu, "Full-wave characterization of the mode conversion in a coplanar waveguide right-angled bend," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 11, 2532-2538, 1995.

21. Zuo, Miaomiao, Jian Ren, and Ying Zeng Yin, "Dual-band antenna with large frequency ratio based on dual-mode transmission line," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 10, 2068-2072, Oct. 2021.
doi:10.1109/LAWP.2021.3103670

22. Dastranj, Aliakbar, "Low-profile ultra-wideband polarisation diversity antenna with high isolation," IET Microwaves Antennas $&$ Propagation, Vol. 11, No. 10, 1363-1368, Aug. 16 2017.
doi:10.1049/iet-map.2016.0937

23. Rajkumar, S., A. Anto Amala, and K. T. Selvan, "Isolation improvement of UWB MIMO antenna utilising molecule fractal structure," Electronics Letters, Vol. 55, No. 10, 576-578, May 16 2019.
doi:10.1049/el.2019.0592

24. Gomez-Villanueva, Ricardo and Hildeberto Jardon-Aguilar, "Compact UWB uniplanar four-port MIMO antenna array with rejecting band," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2543-2547, Dec. 2019.
doi:10.1109/LAWP.2019.2942827

25. Raheja, Dinesh Kumar, Binod Kumar Kanaujia, and Sachin Kumar, "Compact four-port MIMO antenna on slotted-edge substrate with dual-band rejection characteristics," International Journal of RF and Microwave Computer-aided Engineering, Vol. 29, No. 7, Jul. 2019.
doi:10.1002/mmce.21756

26. Sharawi, Mohammad S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems," IEEE Antennas and Propagation Magazine, Vol. 59, No. 2, 162-170, Apr. 2017.
doi:10.1109/MAP.2017.2658346