Vol. 113
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-15
Label-Free Assessment of Vericiguat Therapy on Mitochondrial Redox States in Septic Mice by Resonance Raman Spectroscopy
By
Progress In Electromagnetics Research Letters, Vol. 113, 119-124, 2023
Abstract
Sepsis is a life-threatening infectious disease. Mitochondrial dysfunction is widespread in severe sepsis. The myocardium contains a large number of mitochondria, and the survival rate of sepsis decreases sharply when cardiac dysfunction is involved. Vericiguat (BAY 1021189) is a novel drug for the prevention of heart failure. In this study, we evaluated the mitochondrial function of septic mice and drug-treated mice by resonance Raman spectroscopy (RRS). RRS can accurately identify the Raman characteristic peak at 750 cm-1, 1128 cm-1 and 1585 cm-1 attributed to the reduced cytochrome in septic mice. We found that the intensity of the characteristic peak was significantly decreased in septic mice, indicating an imbalance of mitochondrial redox function, while the function was improved in the drug-treated group. It proves that BAY has the potential as a novel treatment for mitochondrial dysfunction in sepsis.
Citation
Xiaoxiao Zhao, Anqi Yang, Guangbin Zheng, Ronhai Lin, Yinghe Xu, and Sailing He, "Label-Free Assessment of Vericiguat Therapy on Mitochondrial Redox States in Septic Mice by Resonance Raman Spectroscopy," Progress In Electromagnetics Research Letters, Vol. 113, 119-124, 2023.
doi:10.2528/PIERL23091301
References

1. Picard, M. and O. S. Shirihai, "Mitochondrial signal transduction," Cell Metab, Vol. 34, No. 11, 1620-1653, 2022.
doi:10.1016/j.cmet.2022.10.008

2. Singer, M., C. S. Deutschman, C. W. Seymour, et al. "The third international consensus definitions for sepsis and septic shock (Sepsis-3)," Journal of Electromagnetic Waves and Applications, Vol. 315, No. 8, 801-810, 2016.

3. Navarrete, M. L., M. C. Cerdeño, M. C. Serra, et al. "Mitochondrial and microcirculatory distress syndrome in the critical patient," Med Intensiva, 2013, Vol. 37, No. 7, 476-484.
doi:10.1016/j.medin.2013.03.001

4. Galley, H. F., "Oxidative stress and mitochondrial dysfunction in sepsis," Br J. Anaesth, Vol. 107, No. 1, 57-64, 2011.
doi:10.1093/bja/aer093

5. Liaudet, L., N. Rosenblatt-Velin, and P. Pacher, "Role of peroxynitrite in the cardiovascular dysfunction of septic shock," Curr Vasc Pharmacol, Vol. 11, No. 2, 196-207, 2013.

6. Armstrong, P. W., B. Pieske, K. J. Anstrom, J. Ezekowitz, et al. "Vericiguat in patients with heart failure and reduced ejection fraction," N. Engl. J. Med., Vol. 82, No. 20, 1883-1893, 2020.
doi:10.1056/NEJMoa1915928

7. Sandner, P., D. P. Zimmer, G. T. Milne, et al. "Soluble guanylate cyclase stimulators and activators," Handb. Exp. Pharmacol., Vol. 264, 355-394, 2021.

8. Castora, F. J., "Mitochondrial function and abnormalities implicated in the pathogenesis of ASD," Prog Neuropsychopharmacol Biol Psychiatry, Vol. 92, 83-108, 2019.
doi:10.1016/j.pnpbp.2018.12.015

9. Galley, H. F., "Oxidative stress and mitochondrial dysfunction in sepsis," Br J. Anaesth, Vol. 107, 57-64, 2011.
doi:10.1093/bja/aer093

10. Carre, J. E., J. C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, et al. "Survival in critical illness is associated with early activation of mitochondrial biogenesis," Am J Respir Crit Care Med., Vol. 182, 745-751, 2010.
doi:10.1164/rccm.201003-0326OC

11. Jiao, C., Z. Lin, Y. Xu, and S. He, "Noninvasive raman imaging for monitoring mitochondrial redox state in septic rats," Progress In Electromagnetics Research, Vol. 175, 149-157, 2022.
doi:10.2528/PIER22101504

12. Zhang, C., A. Yang, and S. He, "Lateral flow immunoassay strip based on confocal raman imaging for ultrasensitive and rapid detection of covid-19 and bacterial biomarkers," Progress In Electromagnetics Research M, Vol. 120, 41-54, 2023.
doi:10.2528/PIERM23101104

13. Luo, J., Z. Lin, Y. Xing, E. Forsberg, C. Wu, X. Zhu, T. Guo, G. Wang, B. Bian, D. Wu, and S. He, "Portable 4D snapshot hyperspectral imager for fastspectral and surface morphology measurements," Progress In Electromagnetics Research, Vol. 173, 25-36, 2022.
doi:10.2528/PIER22021702

14. Xing, Y., C. Wang, T. Zhang, F. Shen, L. Meng, L. Wang, F. Li, Y. Zhu, Y. Zheng, N. He, and S. He, "VOC detections with optical spectroscopy," Progress In Electromagnetics Research, Vol. 173, 71-92, 2022.
doi:10.2528/PIER22033004

15. Lalonde, J. W., G. D. Noojin, N. J. Pope, S. M. Powell, V. V. Yakovlev, and M. L. Denton, "Continuous assessment of metabolic activity of mitochondria using resonance Raman microspectroscopy," Journal of Biophotonics, Vol. 14, e202000384, 2021.
doi:10.1002/jbio.202000384

16. Morimoto, T., L. D. Chiu, H. Kanda, H. Kawagoe, T. Ozawa, M. Nakamura, et al. "Using redox-sensitive mitochondrial cytochrome Raman bands for label-free detection of mitochondrial dysfunction," Analyst, Vol. 144, 2531-2540, 2019.
doi:10.1039/C8AN02213E

17. Jiao, C., Z. Lin, Y. Xu, and S. He, "Noninvasive raman imaging for monitoring mitochondrial redox state in septic rats," Progress In Electromagnetics Research, Vol. 175, 149-157, 2022.
doi:10.2528/PIER22101504

18. Brazhe, N. A., M. Treiman, B. Faricelli, J. H. Vestergaard, and O. Sosnovtseva, "In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart," PLoS ONE, Vol. 8, e70488, 2013.
doi:10.1371/journal.pone.0070488

19. Chen, Z., J. Liu, L. Tian, Q. Zhang, Y. Guan, L. Chen, et al. "Raman micro-spectroscopy monitoring of cytochrome c redox state in Candida utilis during cell death under low-temperature plasma-induced oxidative stress," Analyst, Online ahead of print, 2020.

20. Morimoto, T., L. D. Chiu, H. Kanda, H. Kawagoe, T. Ozawa, M. Nakamura, et al. "Using redox-sensitive mitochondrial cytochrome Raman bands for label-free detection of mitochondrial dysfunction," Analyst, Vol. 144, 2531-2540, 2019.
doi:10.1039/C8AN02213E

21. Shao, J., M. Lin, Y. Li, X. Li, J. Liu, J. Liang, and H. Ya, "In vivo blood glucose quantification using raman spectroscopy," Plos One, Vol. 7, No. 10, e48127, 2012.
doi:10.1371/journal.pone.0048127

22. Brazhe, N. A., M. Treiman, B. Faricelli, J. H. Vestergaard, and O. Sosnovtseva, "In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart," PLoS ONE, Vol. 8, e70488, 2013.
doi:10.1371/journal.pone.0070488