Vol. 115
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-20
A Low RCS Design Under a Large Incident Angle for the Curved Surface Edge Considering Edge Effects
By
Progress In Electromagnetics Research Letters, Vol. 115, 63-70, 2024
Abstract
In the context of the backscatter problem caused by edge diffraction on metallic curved surfaces, this study proposes a method to mitigate the scattering effect by loading different metasurface structures in four equally divided regions along the surface edge. Based on the design of the loaded metasurface on the curved surface, the interaction between the reflection field on the surface and the diffracted field is regulated by adjusting two key parameters: the reference phase (φ0) at the edge and the phase difference (φd) in adjacent regions. By controlling these parameters, reduction in the monostatic radar cross-section (RCS) can be achieved when the metasurfaces are loaded onto the curved surface. By controlling the reflection phase of a sandwich-like unit structure subjected to oblique incidence of electromagnetic waves, a metasurface that meets the requirements has been designed. Through a comparison and analysis of the near field and monostatic radar cross-section before and after loading the metasurface, the effectiveness of this design method is confirmed. This method is of great significance to control the electromagnetic scattering caused by edge diffraction.
Citation
Guanya Li, "A Low RCS Design Under a Large Incident Angle for the Curved Surface Edge Considering Edge Effects," Progress In Electromagnetics Research Letters, Vol. 115, 63-70, 2024.
doi:10.2528/PIERL23091106
References

1. Yang, Xin Mi, Ge Lan Jiang, Xue Guan Liu, and Cheng Xiang Weng, "Suppression of specular reflections by metasurface with engineered nonuniform distribution of reflection phase," International Journal of Antennas and Propagation, Vol. 2015, 1-8, 2015.
doi:10.1155/2015/560403

2. Zhou, Yang, Guori Zhang, Haiyan Chen, Peiheng Zhou, Xin Wang, Linbo Zhang, Li Zhang, Jianliang Xie, and Longjiang Deng, "Design of phase gradient coding metasurfaces for broadband wave modulating," Scientific Reports, Vol. 8, 8672, Jun. 2018.
doi:10.1038/s41598-018-26981-6

3. Zhou, Yang, Yao Yang, Jianliang Xie, Haiyan Chen, Guori Zhang, Fengxia Li, Li Zhang, Xin Wang, Xiaolong Weng, Peiheng Zhou, Xiaoqiu Li, and Longjiang Deng, "Broadband RCS reduction for electrically-large open-ended cavity using random coding metasurfaces," Journal of Physics D: Applied Physics, Vol. 52, 315303, Jul. 2019.
doi:10.1088/1361-6463/ab1e2a

4. Chou, Ri-Chee, "Reduction of the radar cross section of arbitrarily shaped cavity structures," University of Illinois, 1987.

5. Yin, Hongcheng and Peikang Huang, "PO analysis for RCS of nonorthogonal dihedral corner reflectors coated by RAM," Journal of Systems Engineering and Electronics, Vol. 12, No. 4, 1-6, 2001.

6. Knott, E. F., "RCS reduction of dihedral corners," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 3, 406-409, 1977.
doi:10.1109/TAP.1977.1141586

7. Sang, Jianhua, Zongbin Zhang, and Shuo Wang, "Research on the radar cross section of weak scatterers on stealth vehicle," Advances in Aeronautical Science and Engineering, Vol. 3, 257-262, 2012.

8. Chen, Haiyan, Jianliang Xie, Peiheng Zhou, Haipeng Lu, and Longjiang Deng, "Research progress of repairing materials of electromagnetic discontinuities," Materials China, Vol. 32, 487-491, 2013.

9. Ufimtsev, P. Ya., "Method of edge waves in the physical theory of diffraction," U.S. Air Force Foreign Technology Division Wright Pattern AFB, Ohio, 1971.

10. Jenn, D. C., Radar and Laser Cross Section Engineering, American Institute of Aeronautics and Astronautics Inc., Reston, Virginia, 2019.
doi:10.2514/4.105630

11. Liu, Dawei, Jun Huang, Lei Song, and Jinzu Ji, "Influence of aircraft surface distribution on electromagnetic scattering characteristics," Chinese Journal of Aeronautics, Vol. 30, No. 2, 759-765, Apr. 2017.
doi:10.1016/j.cja.2017.02.015

12. Hassan, Tariq and Maqsood Adnan, "Radar cross section based shape optimization of chine forebody," 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 999-1004, 2022.

13. Lee, W.-S., S.-J. Lee, D.-J. Lee, W.-S. Lee, and J.-W. Yu, "Scattering from concave conducting wedges with longitudinal corrugations: TM case," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 16, 2142-2153, 2012.
doi:10.1080/09205071.2012.728515

14. Lee, Won-Seok, Soo-Ji Lee, Dong-Jin Lee, Wang-Sang Lee, and Jong-Won Yu, "TE scattering from concaved wedges with longitudinal corrugations," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2355-2359, Apr. 2013.
doi:10.1109/TAP.2012.2233703

15. Smith, F. C., "Edge coatings that reduce monostatic RCS," IEE Proceedings - Radar, Sonar and Navigation, Vol. 149, No. 6, 310-314, Dec. 2002.
doi:10.1049/ip-rsn:20020717

16. Knott, E. F., "Suppression of edge scattering with impedance strings," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 12, 1768-1773, Dec. 1997.
doi:10.1109/8.650194

17. Chen, H.-Y., L.-J. Deng, P.-H. Zhou, and J.-L. Xie, "Tapered impedance loading for suppression of edge scattering," IET Microwaves Antennas & Propagation, Vol. 5, No. 14, 1744-1749, Nov. 2011.
doi:10.1049/iet-map.2010.0623

18. Chen, Hai Yan, Guan Ya Li, Li Juan Lu, Di Fei Liang, Xiao Long Weng, Hai Yan Xie, and Long Jiang Deng, "Design of tapered periodic meta-surfaces for suppressing edge electromagnetic scattering," Materials Science Forum, Vol. 998, 203-208, 2020.

19. Zhu, Zhi-Wei, Hai-Yan Chen, Hui-Bin Zhang, Pei-Heng Zhou, Long-Jiang Deng, and Jianliang Xie, "Patterned resistive strip loading for edge scattering suppression of a finite wedge," Progress In Electromagnetics Research M, Vol. 25, 27-38, 2012.

20. Hou, Haijian, Jiang Long, Junhong Wang, and Daniel F. Sievenpiper, "Reduced electromagnetic edge scattering using inhomogeneous anisotropic impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1193-1201, Mar. 2017.
doi:10.1109/TAP.2016.2647681

21. Quarfoth, Ryan and Daniel Sievenpiper, "Alteration of electromagnetic scattering using hard and soft anisotropic impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4593-4599, Oct. 2015.
doi:10.1109/TAP.2015.2458330

22. Li, Guanya, Yanning Liu, Qingting He, Haiyan Chen, Xiaolong Weng, Difei Liang, Jianliang Xie, and Longjiang Deng, "Design of soft and hard composite patterns for electromagnetic scattering controlling at both normal and grazing incidence," Microwave and Optical Technology Letters, Vol. 64, No. 9, 1565-1571, Sep. 2022.
doi:10.1002/mop.33330

23. Zhou, Yulong, Xiang-Yu Cao, Jun Gao, Sijia Li, and Xiao Liu, "RCS reduction for grazing incidence based on coding metasurface," Electronics Letters, Vol. 53, No. 20, 1381-1382, Sep. 2017.
doi:10.1049/el.2017.2414

24. Li, Xinghua, Mingde Feng, Jiafu Wang, Yueyu Meng, Jiaheng Yang, Tonghao Liu, Ruichao Zhu, and Shaobo Qu, "Suppressing edge back-scattering of electromagnetic waves using coding metasurface purfle," Frontiers in Physics, Vol. 8, Sep. 2020.
doi:10.3389/fphy.2020.578295

25. Hansen, Robert C., Phased Array Antennas, John Wiley & Sons, Chichester, 2009.
doi:10.1002/9780470529188