Vol. 113
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-05
Planar Tunable Negative Group Delay Circuit with Low Reflection Loss
By
Progress In Electromagnetics Research Letters, Vol. 113, 53-59, 2023
Abstract
This paper presents the design of a planar tunable Negative Group Delay (NGD) circuit with low reflections. A pulse-shaped stub inscription on the signal strip of a microstrip line generates a negative group delay, which can then be tuned to a desired value by varying the resistance inside the inscription. Poor reflection characteristics are inherent in such circuits, and a conventional solution like a simple impedance matching circuit compromises the overall NGD performance for a reduced reflection loss. Here, we have included a novel impedance-matching network loaded with absorptive elements at the input/output ports to avoid any reflections from the circuit, while maintaining its NGD behavior and compactness. The measured results validate the proposed design with -5 ns GD at 3 GHz with less than -10 dB reflection loss over the whole NGD bandwidth of 228 MHz at 3 GHz.
Citation
Chithra Liz Palson, Deepti Das Krishna, and Babita Roslind Jose, "Planar Tunable Negative Group Delay Circuit with Low Reflection Loss," Progress In Electromagnetics Research Letters, Vol. 113, 53-59, 2023.
doi:10.2528/PIERL23090902
References

1. Su, Y., "Group delay variations in microwave filters and equalization methodologies,", Department of Microtechnology and Nanoscience, Master’s Thesis in Microtechnology and Nanoscience, 2012.
doi:10.1049/el:19930533

2. Lucyszyn, S., I. D. Robertson, and A. H. Aghvami, "Negative group delay synthesizer," Electron. Lett., Vol. 29, 798-800, 1993.
doi:10.1109/LMWC.2007.910489

3. Ravelo, B., A. Perennec, M. Le Roy, and Y. G. Boucher, "Active microwave circuit with negative group delay," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 861-863, Dec. 2007.

4. Ravelo, B., A. Perennec, and M. Le Roy, "Broadband balun using active negative group delay circuit," Eur. Microwave Conf., 466-469, 2007.
doi:10.1002/mop.23883

5. Ravelo, B., M. Le Roy, and A. Perennec, "Application of negative group delay active circuits to the design of broadband and constant phase shifters," Microw. Opt. Technol. Lett., Vol. 50, 3078-3080, 2008.
doi:10.1002/mmce.20482

6. Ravelo, B., A. Perennec, and M. Le Roy, "Synthesis of frequency-independent phase shifters using negative group delay active circuit," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 21, No. 1, 17-24, Wiley, 2011.
doi:10.1109/MWSYM.2007.380286

7. Noto, H., K. Yamauchi, M. Nakayama, and Y. Isota, "Negative group delay circuit for feed-forward amplifier," 2007 IEEE/MTT-S International Microwave Symposium, 1103-1106, 2007.
doi:10.23919/EUMC.2009.5296195

8. Choi, H., Y. Kim, Y. Jeong, and C. D. Kim, "Synthesis of reflection type negative group delay circuit using transmission line resonator," 2009 European Microwave Conference (EuMC), 902-905, 2009.
doi:10.1109/APMC.2013.6695178

9. Chaudhary, G., J. Jeong, P. Kim, Y. Jeong, and J. Lim, "Compact negative group delay circuit using defected ground structure," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), 22-24, 2013.

10. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized negative group delay circuit using defected microstrip structure and lumped elements," 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-3, 2013.
doi:10.2528/PIERM22072301

11. Palson, C. L., R. K. Sreelal, D. D. Krishna, and B. R. Jose, "Frequency switchable and tunable negative group delay circuits based on defected microstrip structures," Progress In Electromagnetics Research M, Vol. 113, 23-33, 2022.
doi:10.1155/2014/836960

12. Chaudhary, G., Y. Jeong, and J. Lim, "Realization of negative group delay network using defected microstrip structure," International Journal of Antennas and Propagation, Vol. 2014, 1-5, 2014.
doi:10.1109/TMTT.2013.2295555

13. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay filters for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, 234-243, Feb. 2014.
doi:10.1109/LMWC.2018.2811254

14. Wang, Z., Y. Cao, T. Shao, S. Fang, and Y. Liu, "A negative group delay microwave circuit based on signal interference techniques," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 4, 290-292, Apr. 2018.
doi:10.1109/TCSII.2019.2955109

15. Wan, F., N. Li, B. Ravelo, and J. Ge, "O=O shape low-loss negative group delay microstrip circuit," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 10, 1795-1799, Oct. 2020.
doi:10.1109/MDAT.2020.3002149

16. Wan, F., N. Li, B. Ravelo, W. Rahajandraibe, and S. Lallechere, "Design of ``I" shape stub-based negative group delay circuit," IEEE Design & Test., Vol. 38, No. 2, 78-88, Apr. 2021.
doi:10.2528/PIERC20112201

17. Meng, Y., Z. Wang, S.-J. Fang, and H. Liu, "A tri-band negative group delay circuit for multiband wireless applications," Progress In Electromagnetics Research C, Vol. 108, 159-169, 2021.
doi:10.1109/TCSII.2022.3192288

18. Gu, T., J. Chen, B. Ravelo, F. Wan, V. Mordachev, and Q. Ji, "Quad-band NGD investigation on crossed resonator interconnect structure," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 12, 4789-4793, 2022.
doi:10.1088/1742-6596/1651/1/012104

19. Lu, Q., X. Wu, and C. Wang, "Compact broadband absorptive bandstop filter based on microstrip," Journal of Physics: Conference Series, Vol. 1651, No. 1, 012104, 2020.

20. Xiao, J.-K. and Q.-F. Wang, "Individually controllable tri-band negative group delay circuit using defected microstrip structure," 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-3, 2019.
doi:10.26866/jees.2020.20.1.73

21. Girdhari, C. and J. Yongchae, "Reconfigurable negative group delay circuit with a low insertion loss using a coupled line," J. Electromagn. Eng. Sci., Vol. 20, No. 1, 73-79, 2020, https://www.jees.kr/journal/view.php?number=3374.

22. Macke, B., B. Segard, and F. Wielonsky, "Optimal superluminal systems," Phys. Rev. E, Vol. 72, 035601(R), 1-4, Sep. 2005.
doi:10.2528/PIERB21071209

23. Kandic, M. and G. Bridges, "Negative group delay prototype filter based on cascaded second order stages implemented with Sallen-Key topology," Progress In Electromagnetics Research B, Vol. 94, 1-18, 2021.