Vol. 113
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-10
Complex Magnetic Permeability Evaluation of Steel Fibers Using Eddy Current NDE and Inverse Problem Methods
By
Progress In Electromagnetics Research Letters, Vol. 113, 81-90, 2023
Abstract
This paper presents a simple approach for evaluating the complex magnetic permeability of the steel fibers used in concrete according to frequency. The approach utilises the eddy current non-destructive evaluation method, where the electrical impedance is measured using a precision LCR meter and computed using a magneto-harmonic model solved in Py-FEMM software. Initially, the electrical conductivity of the steel fiber is measured using a two-contact DC method. Then, the inverse problem method is applied to identify the complex magnetic permeability. This is achieved by iteratively minimising the difference between the calculated and measured impedances using a simplex optimization algorithm. The proposed approach offers a non-contact, non-destructive, fast, and efficient procedure to evaluate the complex permeability. The obtained results provide valuable insights into evaluating the distribution of steel fibers in concrete.
Citation
Loukmane Gherdaoui, Samir Bensaid, Didier Trichet, Hamza Houassine, and Nacira Saoudi, "Complex Magnetic Permeability Evaluation of Steel Fibers Using Eddy Current NDE and Inverse Problem Methods," Progress In Electromagnetics Research Letters, Vol. 113, 81-90, 2023.
doi:10.2528/PIERL23090804
References

1. Altun, F., T. Haktanir, and K. Ari, "Effects of steel fiber addition on mechanical properties of concrete and RC beams," Construction and Building Materials, Vol. 21, No. 3, 654-661, 2007.
doi:10.1016/j.conbuildmat.2005.12.006

2. Lee, J. H., "Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete," Composite Structures, Vol. 168, 216-225, 2017.
doi:10.1016/j.compstruct.2017.01.052

3. Akkaya, Y., S. P. Shah, and B. Ankenman, "Effect of fiber dispersion on multiple cracking of cement composites," Journal of Engineering Mechanics, Vol. 127, No. 4, 311-316, 2001.
doi:10.1061/(ASCE)0733-9399(2001)127:4(311)

4. Kang, S. T. and J. K. Kim, "The relation between fiber orientation and tensile behaviour in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)," Journal of Engineering Mechanics, Vol. 127, No. 4, 311-316, 2001.

5. Abrishambaf, A., J. A. Barros, and V. M. Cunha, "Relation between fibre distribution and postcracking behaviour in steel fibre reinforced self-compacting concrete panels," Cement and Concrete Research, Vol. 51, 57-66, 2013.
doi:10.1016/j.cemconres.2013.04.009

6. Bordelon, A. C. and J. R. Roesler, "Spatial distribution of synthetic fibers in concrete with X-ray computed tomography," Cement and Concrete Composites, Vol. 53, 35-43, 2014.
doi:10.1016/j.cemconcomp.2014.04.007

7. Liu, J., C. Li, J. Liu, et al. "Study on 3D spatial distribution of steel fibers in fiber reinforced cementitious composites through micro-CT technique," Construction and Building Materials, Vol. 48, 656-661, 2013.
doi:10.1016/j.conbuildmat.2013.07.052

8. Fladr, J., P. Bily, and I. Broukalova, "Evaluation of steel fiber distribution in concrete by computeraided image analysis," Compos. Mater. Eng, Vol., Vol. 1, No. 1, 49-70, 2019.

9. Lataste, J., M. Behloul, and D. Breysse, "Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements," NDT E International, Vol. 41, No. 8, 638-647, 2008.
doi:10.1016/j.ndteint.2008.03.008

10. Faifer, M., R. Ottoboni, S. Toscani, et al. "Steel fiber reinforced concrete characterization based on a magnetic probe," 2010 IEEE Instrumentation and Measurement Technology Conference Proceedings, 157-162, 2010.
doi:10.1109/IMTC.2010.5488179

11. Cavalaro, S. H. P., R. L´opez, J. M. Torrents, et al. "Improved assessment of fibre content and orientation with inductive method in SFRC," Materials and Structures, Vol. 48, 1859-1873, 2015.
doi:10.1617/s11527-014-0279-6

12. Cavalaro, S. H. P., R. L´opez-Carre˜no, J. M. Torrents, et al. "Assessment of fibre content and 3D profile in cylindrical SFRC specimens," Materials and Structures, Vol. 49, 577-595, 2015.

13. Torrents, J. M., A. Blanco, P. Pujadas, et al. "Inductive method for assessing the amount and orientation of steel fibers in concrete," Materials and Structures, Vol. 45, 1577-1592, 2012.
doi:10.1617/s11527-012-9858-6

14. Martin, L. E., A. E. Fouda, R. K. Amineh et al. "New high-definition frequency tool for tubing and multiple casing corrosion detection," Abu Dhabi International Petroleum Exhibition and Conference, SPE, 2017.

15. Xia, J., Z. Yuanzhou, B. Ji, et al. "An eddy current testing method based on magnetic induction intensity for detecting cracks in steel bridge decks," Journal of Performance of Constructed Facilities, Vol. 37, No. 3, 04023014, 2023.
doi:10.1061/JPCFEV.CFENG-4235

16. Bowler, N., "Frequency-dependence of relative complex magnetic permeability in steel," AIP Conference Proceedings, Vol. 820, No. 1, 1269-1276, 2006.
doi:10.1063/1.2184670

17. Tokpanov, Y., V. Lebedev, and W. Pellico, "Measurements of complex magnetic permeability of soft steel at high frequencies," Proceedings of IPAC-2012, 2012.

18. Abeywickrama, K., T. Daszczynski, Y. Serdyuk, et al. "Determination of complex permeability of silicon steel for use in high-frequency modeling of power transformers," IEEE Transactions on Magnetics, Vol. 44, No. 4, 438-444, 2008.
doi:10.1109/TMAG.2007.914857

19. Okumura, Y., K. Fujii, T. Nagaya, et al. "Simple permeability measurement of thin ferromagnetic sheets at low frequency using LCR meter," Electrical and Electronic Engineering, Vol. 8, No. 2, 53-58, 2018.

20. Altair "FEKO overview," [Online] Available: http://www.feko.info/.

21. Chen, Y., X. Wang, H. Chen, et al. "Novel ultra-wide band (10 MHz-26 GHz) permeability measurements for magnetic films," IEEE Transactions on Magnetics, Vol. 54, No. 11, 1-4, 2018.

22. Radoni´c, V., N. Blaˇz, and L. ˇZivanov, "Measurement of complex permeability using short coaxial line reflection method," Acta Physica Polonica A, Vol. 117, No. 5, 820-824, 2010.
doi:10.12693/APhysPolA.117.820

23. Kacki, M., M. S. Rylko, J. G. Hayes, et al. "Measurement methods for high-frequency characterizations of permeability, permittivity, and core loss of Mn-Zn ferrite cores," IEEE Transactions on Power Electronics, Vol. 37, No. 12, 15152-15162, 2022.
doi:10.1109/TPEL.2022.3189671

24. David Meeker (2021) PyFEMM (0.1.3) Available from: https://www.femm.info/wiki/pyFEMM.

25. Nelder, J. A. and R. Mead, "A simplex method for function minimization," The Computer Journal, Vol. 7, No. 4, 308-313, 1965.
doi:10.1093/comjnl/7.4.308

26. "FEMM (Version 4.2) [Computer software],", 2021.
doi:10.1093/comjnl/7.4.308

27. Bensaid, S., "Global inductance computation of a multilayer circular air coil with a wire of rectangular cross section: Case of a uniform current distribution," Progress In Electromagnetics Research M, Vol. 102, 149-158, 2021.
doi:10.2528/PIERM21031704

28. Bensaid, S., D. Trichet, and J. Fouladgar, "Electrical conductivity identification of composite materials using a 3-D anisotropic shell element model," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1859-1862, 2009.
doi:10.1109/TMAG.2009.2012833

29. Safer, O. A., S. Bensaid, D. Trichet, et al. "Transverse electrical resistivity evaluation of rod unidirectional carbon fiber-reinforced composite using eddy current method," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-4, 2018.
doi:10.1109/TMAG.2017.2751962

30. Rose, J. H., E. Uzal, and J. C. Moulder, "Magnetic permeability and eddy-current measurements,” D. O. Thompson and D. E. Chimenti, (eds.)," Review of Progress in Quantitative Nondestructive Evaluation, Springer, Boston, MA, 1995.