Vol. 113
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-09
Single- and Dual-Band Bandpass Filters Based on a Novel Microstrip Loop-Type Resonators Loaded with Shorted Stubs
By
Progress In Electromagnetics Research Letters, Vol. 113, 61-67, 2023
Abstract
A novel microstrip loop-type resonator with four resonant modes is proposed in this letter. The resonator is formed by a loop-type microstrip line loaded with four shorted stubs. It has a symmetrical structure, thus the odd-even-mode method is adopted to implement the resonant analysis. The novelty of the proposed resonator lies in two aspects. One is that its resonant frequencies can be adjusted in a more flexible way. The other is that its resonant modes have a uniform electromagnetic field distribution, which is beneficial for the excitation of resonant modes. For the purpose of demonstration, based on the novel resonator, a single-band bandpass filter with four transmission poles and a dual-band bandpass filter with two transmission poles in each passband are constructed. Additionally, source-load cross coupling is introduced, and several transmission zeros are generated in the stopband, which improves the out-of-band performance greatly. The designed single-band filter has the central frequency of 2.4 GHz and fractional bandwidth (FBW) of 4.5%, and the dual-band filter has the central frequency of 1.8/2.4 GHz and fractional bandwidth of 2.0%/2.5%. The two bandpass filters are designed, fabricated, and measured. Agreement between the simulated and measured results verifies the effectiveness of the proposed resonator and filters.
Citation
Jun-Mei Yan, Bao-Jie Kang, Yong Yang, and Liangzu Cao, "Single- and Dual-Band Bandpass Filters Based on a Novel Microstrip Loop-Type Resonators Loaded with Shorted Stubs," Progress In Electromagnetics Research Letters, Vol. 113, 61-67, 2023.
doi:10.2528/PIERL23083105
References

1. Rodrguez-Meneses, L. A., C. Gutirrez-Martnez, R. S. Murphy-Arteaga, J. Meza-Prez, and J. A. Torres-Frtiz, "Wideband dual-mode microstrip resonators as IF filters in a K-band wireless transceiver," Microwave and Optical Technology Letters, Vol. 62, No. 2, 606-614, 2020.
doi:10.1002/mop.32066

2. Hong, J.-S. and M. Lancaster, "Bandpass characteristics of new dual-mode microstrip square loop resonators," Electron Lett, Vol. 31, No. 11, 891-892, 1995.
doi:10.1049/el:19950591

3. Hong, J.-S. and M. J. Lancaster, "Microstrip bandpass filter using degenerate modes of a novel meander loop resonator," Microwave and Guided Wave Letters, IEEE, Vol. 5, No. 11, 371-372, 1995.
doi:10.1109/75.473539

4. Gorur, A., "Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications," IEEE Trans Microwave Theory Technol, Vol. 52, No. 2, 671-677, 2004.
doi:10.1109/TMTT.2003.822033

5. Gorur, A., "Realization of a dual-mode bandpass filter exhibiting either a Chebyshev or an elliptic characteristic by changing perturbation’s size," IEEE Microwave Wireless Compon. Lett., Vol. 14, No. 3, 118-120, 2004.
doi:10.1109/LMWC.2004.824811

6. Luo, S. and L. Zhu, "A novel dual-mode dual-band bandpass filter based on a single ring resonator," IEEE Microwave Wireless Compon. Lett., Vol. 19, No. 8, 497-499, 2009.
doi:10.1109/LMWC.2009.2024826

7. Luo, S., L. Zhu, and S. Sun, "A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes," IEEE Trans. Microwave Theory Technol., Vol. 58, No. 12, 3427-3432, 2010.

8. Luo, S., L. Zhu, and S. Sun, "Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator," IEEE Trans. Microwave Theory Technol., Vol. 59, No. 5, 1222-1229, 2011.
doi:10.1109/TMTT.2011.2123106

9. Liu, L., X. Liang, R. Jin, X. Bai, H. Fan, and J. Geng, "A compact and high-selectivity tri-band bandpass filter based on symmetrical stub-loaded square ring resonator," Microwave and Optical Technology Letters, Vol. 62, No. 2, 630-636, 2020.
doi:10.1002/mop.32070

10. Mirzaei, M. and A. Sheikhi, "Design and implementation of microstrip dual-band filtering power divider using square-loop resonator," Electron Lett., Vol. 56, No. 1, 19-21, 2020.
doi:10.1049/el.2019.3050

11. Yan, J.-M., Z.-P. Xiao, and L. Cao, "A simple balanced bandpass filter using loop-type microstrip resonator loaded with shorted/opened stubs," Progress In Electromagnetics Research Letters, Vol. 107, 141-149, 2022.
doi:10.2528/PIERL22080204

12. Hong, J. S. and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, John Wiley & Sons, 2001.
doi:10.1002/0471221619