Vol. 115
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-13
A Miniaturized Frequency Selective Surface for GSM Shielding by Utilizing a Spiral Handshake Structure
By
Progress In Electromagnetics Research Letters, Vol. 115, 27-32, 2024
Abstract
This paper aims to design a compact frequency selective surface (FSS) for electromagnetic shielding in the 1.8 GHz band of GSM, ensuring that the stopband width covers the target frequency range in both simulations and actual measurements. The primary focus of this paper is to design a compact FSS with good miniaturization for real-world applications. The proposed FSS structure is a single-layer double-sided structure. The regression models reflecting the mapping relationship between the resonant frequency and the structural parameters are established to guide the design. An equivalent circuit model (ECM) is presented to clearly explain the working mechanism of the FSS. The unit size is only 0.038λ0, where λ0 is the wavelength of the resonant frequency in free space. In addition, the proposed FSS provides stable performance under oblique angles of incidence for both TE and TM polarizations. An FSS prototype has been manufactured for verification.
Citation
Xian-Jun Sheng, Chen Gu, Ning Liu, Hongwei Wang, and Xiangyan Liu, "A Miniaturized Frequency Selective Surface for GSM Shielding by Utilizing a Spiral Handshake Structure," Progress In Electromagnetics Research Letters, Vol. 115, 27-32, 2024.
doi:10.2528/PIERL23083004
References

1. Periyasamy, M. and R. Dhanasekaran, "Electromagnetic interference on critical medical equipments by RF devices," Proc. Int. Conf. Commun. Signal Process., 78-82, April. 3-5 2013.

2. Kaur, M., S. Kakar, and D. Mandal, "Electromagnetic interference," Proc. Int. Conf. Electron. Comput. Technol., Vol. 4, No. 1, 1-5, 2011.

3. Unal, E., A. Gokcen, and Y. Kutlu, "Effective electromagnetic shielding," IEEE Microwave Magazine, Vol. 7, No. 4, 48-54, Aug. 2006.
doi:10.1109/MMW.2006.1663989

4. Yin, Weiyang, Hou Zhang, Tao Zhong, and Xueliang Min, "A novel compact dual-band frequency selective surface for gsm shielding by utilizing a 2.5-dimensional structure," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 6, 2057-2060, Dec. 2018.
doi:10.1109/TEMC.2018.2790584

5. Liu, Ning, Xianjun Sheng, Chunbo Zhang, Jingjing Fan, and Dongming Guo, "A miniaturized triband frequency selective surface based on convoluted design," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2384-2387, 2017.
doi:10.1109/LAWP.2017.2719859

6. Mittra, R., C. H., and T. Cwik, "Techniques for analyzing frequency selective surfaces - A review," Proceedings of The IEEE, Vol. 76, No. 12, 1593-1615, Dec. 1988.
doi:10.1109/5.16352

7. Ranga, Yogesh, Ladislau Matekovits, Karu P. Esselle, and Andrew R. Weily, "Multioctave frequency selective surface reflector for ultrawideband antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 219-222, 2011.
doi:10.1109/LAWP.2011.2130509

8. Syed, Irfan Sohail, Yogesh Ranga, Ladislau Matekovits, Karu P. Esselle, and Stuart G. Hay, "A single-layer frequency-selective surface for ultrawideband electromagnetic shielding," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1404-1411, Dec. 2014.
doi:10.1109/TEMC.2014.2316288

9. Dewani, Aliya A., Steven G. O'Keefe, David V. Thiel, and Amir Galehdar, "Miniaturised meandered square frequency selective surface on a thin flexible dielectric with selective transmission," Flexible and Printed Electronics, Vol. 1, No. 2, 025001, Jun. 1 2016.
doi:10.1088/2058-8585/1/2/025001

10. Natarajan, Rajesh, Malathi Kanagasabai, Sanjay Baisakhiya, Ramprabhu Sivasamy, Sandeepkumar Palaniswamy, and Jayaram Kizhekke Pakkathillam, "A compact frequency selective surface with stable response for wlan applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 718-720, 2013.
doi:10.1109/LAWP.2013.2264837

11. Mellita, R. Adeline, D. S. Chandu, S. S. Karthikeyan, and P. Damodharan, "A miniaturized wideband frequency selective surface with interconnected cell structure," Aeu-international Journal of Electronics and Communications, Vol. 120, Jun. 2020.
doi:10.1016/j.aeue.2020.153196

12. Zhao, Peng-Chao, Zhi-Yuan Zong, Wen Wu, and Da-Gang Fang, "A convoluted structure for miniaturized frequency selective surface and its equivalent circuit for optimization design," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2, 2963-2970, Jul. 2016.
doi:10.1109/TAP.2016.2565694

13. Hong, Tao, Ke Peng, and Mengdan Wang, "Miniaturized frequency selective surface using handshake convoluted stripe," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2026-2030, Oct. 2019.
doi:10.1109/LAWP.2019.2936548

14. Sheng, Xianjun, Xia Zhao, Ning Liu, and Xiang Gao, "Design of miniaturized fss using equivalent circuit model and multi-objective particle swarm optimization," Journal of Physics D-applied Physics, Vol. 54, No. 40, 405001, Oct. 7 2021.
doi:10.1088/1361-6463/ac118d

15. Liu, Ning, Xianjun Sheng, and Xia Zhao, "Design of dual-polarized frequency selective rasorber with two independent transmission windows using multi-resonators," IEEE Access, Vol. 8, No. 99, 223723-223729, 2020.
doi:10.1109/ACCESS.2020.3045108