Vol. 113
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-13
Design of Wideband Circularly Polarized Filtering Antenna with High Frequency Selectivity and Gain Flatness
By
Progress In Electromagnetics Research Letters, Vol. 113, 101-111, 2023
Abstract
In the paper, a wideband circularly polarized (CP) filtering antenna is proposed, which is composed of four bent Vivaldi elements excited with sequential-rotated feeding technique. Since the Vivaldi element has the advantages of high gain and wide bandwidth, it is selected as the radiation element. On this basis, two cross slots are etched on the Vivaldi antenna to increase the gain at lower frequency band, and bent method which has less effect on the overall performance is applied for lowing the profile of the antenna. To realize filtering characteristic, the quadrature four-feed network consisting of one modified miniaturized filtering rat race coupler (FRC) and two compact wideband quadrature couplers is utilized as the sequential-rotated feeding for the Vivaldi elements. Design procedures of the Vivaldi antenna, the modified filtering FRC and the quadrature four-feed network are given. For validation, a prototype is fabricated and measured. Results show that more than 60% fractional bandwidth (FBW) is achieved under the criterions of more than 10 dB return loss and less than 3 dB axial ratio. Within the AR bandwidth, the gain is in the range of 7.5 dBic~10.1 dBic. Out of the operation band, the gain sharply decreases to be lower than -5 dBic with a rectangle coefficient (|Normalized Gain-10-dB/Gain0-dB|) of 1.25, which indicates good filtering performance.
Citation
Zimen Zhao, Hongmei Liu, Junhao Ren, Zhongbao Wang, and Shao-Jun Fang, "Design of Wideband Circularly Polarized Filtering Antenna with High Frequency Selectivity and Gain Flatness," Progress In Electromagnetics Research Letters, Vol. 113, 101-111, 2023.
doi:10.2528/PIERL23082901
References

1. Liu, Y., X. Liang, C. Fang, J. Geng, and R. Jin, "A K-band circularly-polarized slot antenna based on L-shaped waveguide cavity," International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Nanjing, China, May 2021.

2. Soliman , S. A. M., E. M. Eldesouki, A. M. Attiya, A. P. Freundorfer, and Y. M. M. Antar, "Circularly polarized folded reflectarray antenna," International Microwave and Antenna Symposium (IMAS), 36-40, Cairo, Egypt, March 2023.

3. Li, J., H. Shi, H. Li, and A. Zhang, "Quad-band probe-fed stacked annular patch antenna for GNSS applications," IEEE Antennas Wireless Propag. Lett., Vol. 13, 372-375, 2014.
doi:10.1109/LAWP.2014.2306442

4. Li, X., Y. Li, J. T. Huang, and O. Yang Du, "A cross-slot loaded miniaturized UWB Vivaldi dual-polarized antenna," International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Nanjing, China, May 2021.

5. Guo, L., P. Zhang, F. Zeng, Z. Zhang, and C. Zhang, "A novel four-arm planar spiral antenna for GNSS application," IEEE Access, Vol. 9, 168899-168906, 2021.
doi:10.1109/ACCESS.2021.3133663

6. Zhong, Z.-P. and X. Zhang, "A travelling-wave-fed slot spiral antenna with wide axial-ratio bandwidth and beamwidth for GNSS applications," IEEE Open Journal Antennas Propag., Vol. 2, 578-584, 2021.
doi:10.1109/OJAP.2021.3074287

7. Zhang, Y.-X., Y.-C. Jiao, Z. Zhang, and S. Feng, "Wideband accurate-out-of-phase-fed circularly polarized array based on penta-mode aperture antenna element with irregular cavity," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 638-642, Jan. 2019.
doi:10.1109/TAP.2018.2876729

8. Li, X., R. Ma, H. Cai, Y.-M. Pan, and X. Y. Zhang, "High-gain dual-band aperture-shared CP patch antenna with wide AR beamwidth for Satellite Navigation System," IEEE Antennas Wireless Propag. Lett., Vol. 22, No. 8, 1888-1891, Aug. 2023.
doi:10.1109/LAWP.2023.3268653

9. Cicchetti, R., V. Cicchetti, A. Faraone, L. Foged, and O. Testa, "A compact high-gain wideband lens Vivaldi antenna for wireless communications and through-the-wall imaging," IEEE Trans. Antennas Propag., Vol. 69, No. 6, 3177-3192, Jun. 2021.
doi:10.1109/TAP.2020.3037777

10. Zhang, H., Y. Guo, and G. Wang, "A design of wideband circularly polarized antenna with stable phase center over the whole GNSS bands," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 12, 2746-2750, Dec. 2019.
doi:10.1109/LAWP.2019.2951006

11. Yang, W. J., Y. M. Pan, and X. Y. Zhang, "A single-layer low-profile circularly polarized filtering patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 4, 602-606, Apr. 2021.
doi:10.1109/LAWP.2021.3058790

12. Cheng, G., B. Huang, Z. Huang, and L. Yang, "A high-gain circularly polarized filtering stacked patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 22, No. 5, 995-999, May 2023.
doi:10.1109/LAWP.2022.3229951

13. Liu, S., Z. Wang, and Y. Dong, "A compact filtering patch antenna with high suppression level and its CP application," IEEE Antennas Wireless Propag. Lett., Vol. 22, No. 4, 769-773, April 2023.
doi:10.1109/LAWP.2022.3224845

14. Xiang, B. J., S. Y. Zheng, Y. M. Pan, and Y. X. Li, "Wideband circularly polarized dielectric resonator antenna with bandpass filtering and wide harmonics suppression response," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 2096-2101, April 2017.
doi:10.1109/TAP.2017.2671370

15. Zhong, X., D. Shen, L. Zhou, D. You, Q. Lin, and X. Zhang, "Circularly polarized filtering antenna based on integrated substrate gap waveguide," IEEE MTT-S International Wireless Symposium (IWS), 1-3, Nanjing, China, 2021.

16. Wang, J. and Y. Zhang, "Broadband high gain circularly polarized filtering antenna," IEEE Conference on Antenna Measurements and Applications (CAMA), 1-3, Guangzhou, China, 2022.

17. Zhang, K., R. Tan, Z. H. Jiang, Y. Huang, L. Tang, and W. Hong, "A compact, ultrawideband dualpolarized Vivaldi antenna with radar cross section reduction," IEEE Antennas Wireless Propag. Lett., Vol. 21, No. 7, 1323-1327, July 2022.
doi:10.1109/LAWP.2022.3166821

18. Zhao, Z. M., H. M. Liu, J. H. Ren, Z. B. Wang, and S. J. Fang, "Wideband filtering rat-race coupler with shared triple-mode resonator," Electronics, Vol. 12, No. 12, 2023.

19. Liu, H. M., M. Y. Guan, H. X. Zhang, S. J. Fang, and Z. B. Wang, "Compact wideband and harmonic suppressed quadrature coupler using susceptance loaded coupled lines," Microw. Opt. Technol. Lett., Vol. 64, No. 3, 507-514, March 2022.
doi:10.1002/mop.33152