Vol. 121
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-12-02
Design, Modeling and Analysis of Low Cross Polarization Level Low Radar Cross Section Conformal Ultra Wideband Absorber Based on Resistive Metasurface
By
Progress In Electromagnetics Research M, Vol. 121, 147-156, 2023
Abstract
In this paper, a low cross-polarization level, low radar cross section (RCS), conformal, ultrawideband, polarization-insensitive absorber utilizing sinusoidal periphery annular ring (SPAR) resonator based novel resistive metasurface is presented. The proposed absorber operates with more than 90% absorptivity over the frequency range 7.68 GHz-24.90 GHz encompassing X-, Ku- and major portion of K-bands. The absorber consists of two sinusoidal peripheries annular rings embedded with lumped resistors, placed on top of a 0.1 mm thin low cost FR-4 substrate which is supported by metal backed foam. The sinusoidal periphery on the annular rings improves the absorption bandwidth and miniaturizes the proposed structure. Cross-polarized reflected component from the absorber is also investigated and included in the estimation of absorptivity to validate that the proposed structure functions as an absorber and not as a reflective type polarization converter. An equivalent circuit analysis based on the transmission line model is also presented. Novelty of the proposed article's lies in the design approach for the proposed absorber in which flexibility is incorporated to choose unit cell geometrical parameters as per the limiting frequencies (upper and lower) of desired band along with some miniaturization aspects of the absorbing structure. Furthermore, 10 dB RCS reduction is discussed, and the formula is derived by including cross-polarized reflection component of the incident wave in estimation. The proposed absorber is validated through theoretical, simulation, and experimental studies for planar and conformal applications.
Citation
Saurabh Kumar Srivastava, Rahul Dubey, and Manoj Kumar Meshram, "Design, Modeling and Analysis of Low Cross Polarization Level Low Radar Cross Section Conformal Ultra Wideband Absorber Based on Resistive Metasurface," Progress In Electromagnetics Research M, Vol. 121, 147-156, 2023.
doi:10.2528/PIERM23082803
References

1. Srivastava, Saurabh Kumar, B. Satyanarayana, Arun Kumar Saurabh, and Manoj Kumar Meshram, "Low RCS polarization-insensitive ultra wideband absorber based on resistive metasurface," 2019 IEEE MTT S International Microwave and RF Conference (IMARC), 1-4, Mumbai, India, Dec. 2019.
doi:10.1109/imarc45935.2019.9118622

2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, May 2008.
doi:10.1103/PhysRevLett.100.207402

3. Cao, Hailin, Meng Shan, Tao Chen, Jianmei Lei, Linhua Yang, and Xiaoheng Tan, "Triple-band polarization-independent ultrathin metamaterial absorber," Progress in Electromagnetics Research M, Vol. 77, 93-102, 2019.
doi:10.2528/PIERM18110602

4. Cao, H., M. Shan, T. Chen, J. Lei, L. Yang, and X. Tan, "An ultrathin five-bandpolarization insensitive metamaterial absorber having hexagonal array of 2D-bravais-lattice," Progress In Electromagnetics Research C, Vol. 87, 13-23, 2018.

5. "A novel six-band polarization-insensitive metamaterial absorber with four multiple-mode resonators," Progress In Electromagnetics Research C, Vol. 77, 133-144, 2017.

6. Ghosh, Saptarshi, Somak Bhattacharyya, Devkinandan Chaurasiya, and Kumar Vaibhav Srivastava, "An ultrawideband ultrathin metamaterial absorber based on circular split rings," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1172-1175, 2015.
doi:10.1109/LAWP.2015.2396302

7. De Araujo, Jose Bruno O., Glaucio L. Siqueira, Erich Kemptner, Mauricio Weber, Cynthia Junqueira, and Marbey Manhaes Mosso, "An ultrathin and ultrawideband metamaterial absorber and an equivalent-circuit parameter retrieval method," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3739-3746, May 2020.
doi:10.1109/TAP.2020.2963900

8. Li, Si-Jia, Xiang-Yu Cao, Jun Gao, Tao Liu, Yue-Jun Zheng, and Zhao Zhang, "Analysis and design of three-layer perfect metamaterial-inspired absorber based on double split-serration-rings structure," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5155-5160, Nov. 2015.
doi:10.1109/TAP.2015.2475634

9. Huang, Li, Dibakar Roy Chowdhury, Suchitra Ramani, Matthew T. Reiten, Sheng-Nian Luo, Antoinette J. Taylor, and Hou-Tong Chen, "Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band," Optics Letters, Vol. 37, No. 2, 154-156, Jan. 2012.
doi:10.1364/OL.37.000154

10. Ahmed, Fahad, Tayyab Hassan, and Nosherwan Shoaib, "Comments on “an ultrawideband ultrathin metamaterial absorber based on circular split rings”," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 512-514, Mar. 2020.
doi:10.1109/LAWP.2020.2968144

11. Rahman, Saeed Ur, Wang Yi, and Qunsheng Cao, "Comments on “an ultrathin and ultrawideband metamaterial absorber and an equivalent-circuit parameter retrieval method”," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 12, 8272-8273, Dec. 2020.
doi:10.1109/TAP.2020.3028549

12. Zhang, Hao, Yu Ma, Hai Feng Zhang, Jing Yang, and Jia-Xuan Liu, "Comment on “frequency tunable low-cost microwave absorber for EMI/EMC application”," Progress in Electromagnetics Research Letters, Vol. 78, 39-43, 2018.
doi:10.2528/PIERL18052602

13. Amin, Muhammad, Aliza Fida, Aamir Rashid, Omar Siddiqui, and Farooq A. Tahir, "Anti-reflecting metasurface for broadband polarization independent absorption at ku band frequencies," Scientific Reports, Vol. 12, No. 1, 20073, Jun. 2022.
doi:10.1038/s41598-023-35750-z

14. Chejarla, S., S. R. Thummaluru, and R. K. Chaudhary, "Flexible metamaterial absorber with wide incident angle insensitivity for conformal applications," Electronics Letters, Vol. 55, No. 3, 133-134, Feb. 2019.
doi:10.1049/el.2018.7501

15. Hakla, Neha, Saptarshi Ghosh, Kumar Vaibhav Srivastava, and Anuj Shukla, "A dual-band conformal metamaterial absorber for curved surface," 2016 Ursi International Symposium on Electromagnetic Theory (EMTS), 771-774, Espoo, Finland, Aug. 2016.

16. Singh, Amit Kumar, Mahesh P. Abegaonkar, and Shiban K. Koul, "Dual- and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 3, 878-886, Jun. 2019.
doi:10.1109/TEMC.2018.2839881

17. Kumar, Awanish, G. Shrikanth Reddy, and Shiv Narayan, "Flexible EM wave absorber with high angular stability and low cross polarization reflection level," 2021 34th General Assembly and Scientific Symposium of the International Union Radio Science (URSI GASS), 1-4, Italy, 2021.

18. Tirkey, Manish Mathew and Nisha Gupta, "Broadband polarization-insensitive inkjet-printed conformal metamaterial absorber," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 6, 1829-1836, Dec. 2021.
doi:10.1109/TEMC.2021.3089830

19. Huang, Xianjun, Kewen Pan, and Zhirun Hu, "Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers," Scientific Reports, Vol. 6, Dec. 2016.
doi:10.1038/srep38197

20. Kalraiya, S., R. K. Chaudhary, and M. A. Abdalla, "Design and analysis of polarization independent conformal wideband metamaterial absorber using resistor loaded sector shaped resonators," Journal of Applied Physics, Vol. 125, No. 13, 134904, Apr. 2019.

21. Kalraiya, Sachin, Raghvendra Kumar Chaudhary, and Mahmoud A. Abdalla, "Design and analysis of polarization independent conformal wideband metamaterial absorber using resistor loaded sector shaped resonators," Journal of Applied Physics, Vol. 125, No. 13, 134904, Apr. 2019.
doi:10.1063/1.5085253

22. Chen, Huijie, Xiaoqing Yang, Shiyue Wu, Di Zhang, Hui Xiao, Kama Huang, Zhanxia Zhu, and Jianping Yuan, "Flexible and conformable broadband metamaterial absorber with wide-angle and polarization stability for radar application," Materials Research Express, Vol. 5, No. 1, 015804, Jan. 2018.
doi:10.1088/2053-1591/aaa7ab

23. Costa, Filippo, "A simple effective permittivity model for metasurfaces within multilayer stratified media," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 5148-5153, Aug. 2021.
doi:10.1109/TAP.2021.3060493

24. Munk, B. A., Frequency Selective Surface: Theory and Design, Wiley, New York, 2000.

25. Yu, Weiliang, Guo Qing Luo, Yufeng Yu, Wenhui Cao, Yujian Pan, and Zhongxiang Shen, "Dual-polarized band-absorptive frequency selective rasorber using meander-line and lumped resistors," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1318-1322, Feb. 2019.
doi:10.1109/TAP.2018.2883643

26. CARVER, K. R. and J. W. MINK, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 2-24, 1981.
doi:10.1109/TAP.1981.1142523

27. Costa, Filippo, Simone Genovesi, Agostino Monorchio, and Giuliano Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1201-1209, Mar. 2013.
doi:10.1109/TAP.2012.2227923

28. Wakatsuchi, Hiroki, John Paul, and Christos Christopoulos, "Performance of customizable cut-wire-based metamaterial absorbers: absorbing mechanism and experimental demonstration," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5743-5752, Dec. 2012.
doi:10.1109/TAP.2012.2210180

29. Wang, Z. L., K. Hashimoto, N. Shinohara, and H. Matsumoto, "Frequency-selective surface for microwave power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 10, 2039-2042, Oct. 1999.

30. Bahal, I. and P. Bhartia, Microwave Solid State Circuit Design, 57-60, John-Wiley & Sons, Hoboken, NJ, USA, 2003.

31. Balanis, C. A., Advanced Engineering Electromagnetics, 584, John-Wiley & Sons, USA, 2012.

32. Yang, H., X. Y. Cao, J. Gao, W. Li, Z. Yuan, and K. Shang, "Low RCS metamaterial absorber and extending bandwidth based on electromagnetic resonances," Progress In Electromagnetics Research M, Vol. 33, 31-44, 2013.

33. Product information. [Online], Available: http://www.qdruigao.com/en/.