Vol. 121
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-11-09
Low-Frequency Magnetic Shielding of a Cavity Formed by Two Imperfectly Conducting Sheets: Effect of Sheet-to-Sheet Distance and Comparison with the Single-Sheet Configuration
By
Progress In Electromagnetics Research M, Vol. 121, 13-26, 2023
Abstract
In standard measurement methods such as NSA 94-106, the low-frequency magnetic shielding effectiveness of a shielding enclosure is tested using the near field of loop antenna. Under this near-field configuration, there is no analytical or closed-form solution for volumetric shielding like box/cavity except for planar shielding like a sheet of infinite extension. Exploring the correlation between volumetric shielding and planar shielding can provide simple prediction methods for volumetric shielding based on planar shielding. As a taste to this end, this article explores the difference between the shielding effectiveness of a double-sheet cavity and a single sheet under the NSA 94-106 standard. We derived the exact solution in integral form for electromagnetic fields inside the cavity and calculated the curves of shielding effectiveness on the frequency with different sheet material, thickness, and sheet-to-sheet distance. The results show that when the distance from the receiving antenna to the back sheet is greater than the diameter of the loop antenna, the results of a double-sheet cavity tend to be consistent with a single-sheet configuration. When the distance is less than the diameter, the difference between the two depends on material type and sheet thickness.
Citation
Fubin Pang, Shi Chen, Jianfei Ji, Yiyi Jing, Sijia Liu, and Chongqing Jiao, "Low-Frequency Magnetic Shielding of a Cavity Formed by Two Imperfectly Conducting Sheets: Effect of Sheet-to-Sheet Distance and Comparison with the Single-Sheet Configuration," Progress In Electromagnetics Research M, Vol. 121, 13-26, 2023.
doi:10.2528/PIERM23082601
References

1. Zhou, Y., L. Zhang, and S. Xiu, "Design and analysis of platform shielding for wireless charging tram," IEEE Access, Vol. 7, 129443-129451, 2019.
doi:10.1109/ACCESS.2019.2939197

2. Lee, S., D. H. Kim, Y. Cho, et al. "Low leakage electromagnetic field level and high efficiency using a novel hybrid loop-array design for wireless high power transfer system," IEEE Trans. Ind. Electron., Vol. 66, No. 6, 4356-4367, Jul. 2018.
doi:10.1109/TIE.2018.2851988

3. Mohammad, M., E. T. Wodajo, S. Choi, et al. "Modeling and design of passive shield to limit EMF emission and to minimize shield loss in unipolar wireless charging system for EV," IEEE Transactions on Power Electronics, Vol. 34, No. 12, 12235-12245, 2019.
doi:10.1109/TPEL.2019.2903788

4. Mou, W. and M. Lu, "Research on shielding and electromagnetic exposure safety of an electric vehicle wireless charging coil," Progress In Electromagnetics Research C, Vol. 117, 55-72, 2021.
doi:10.2528/PIERC21072701

5. Kellogg, J., "Navigating the selection of magnetic resonance imaging shielding systems," IEEE Transactions on Electromagnetic Compatibility, Vol. 3, No. 1, 43-46, 2021.

6. Collier, L., et al. "Magnetic field diffusion in medium-walled conductors," IEEE Transactions on Plasma Science, Vol. 47 , No. 1, 1024-1031, 2019.
doi:10.1109/TPS.2018.2881453

7. Giaccone, L., V. Cirimele, and A. Canova, "Mitigation solutions for the magnetic field produced by MFDC spot welding guns," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 1, 83-92, 2020.
doi:10.1109/TEMC.2018.2877805

8. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding: Theory and Applications, 2nd Edition, Wiley, Hoboken, NJ, USA, 2023.

9. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, Wiley-Interscience Press, New York, 1996.

10. Lee, K. S. H. and G. Bedrosian, "Diffusive electromagnetic penetration into metallic enclosures," IEEE Trans. Antennas Propagat., Vol. 27, No. 2, 194-198, 1979.
doi:10.1109/TAP.1979.1142064

11. "Specification for Shielded Enclosures," Specification NSA, 94-106, 1994.

12. "IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures," IEEE Standard 299-2006, 2007.

13. Moser, J. R., "Low-frequency shielding of a circular loop electromagnetic field source," IEEE Trans. Electromagn. Compat., Vol. 9, No. 1, 6-18, 1967.
doi:10.1109/TEMC.1967.4307447

14. Qin, D. and C. Jiao, "Low-frequency magnetic shielding of planar screens: effects of loop radius and loop-to-loop distance," IEEE Transactions on Electromagnetic Compatibility, Vol. 64, No. 2, 367-377, 2021.
doi:10.1109/TEMC.2021.3118543

15. Andrieu, G., J. Panh, A. Reineix, et al. "Homogenization of composite panels from a nearfield magnetic shielding effectiveness measurement," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 700-703, Jun. 2012.
doi:10.1109/TEMC.2012.2186455

16. Lovat, G., P. Burghignoli, R. Araneo, and S. Celozzi, "Magnetic shielding of planar metallic screens: A new analytical closed-form solution," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 1884-1888, Oct. 2020.
doi:10.1109/TEMC.2019.2952401

17. Ryan, C. M., "Computer expression for predicting shielding effectiveness for the low-frequency plane shield case," IEEE Transactions on Electromagnetic Compatibility, Vol. 9, No. 2, 83-94, 1967.
doi:10.1109/TEMC.1967.4307468

18. Jiao, C., F. Ning, X. Yang, et al. "Low-frequency magnetic shielding of planar shields: A unified wave impedance formula for the transmission line analogy," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 4, 1046-1057, 2021.
doi:10.1109/TEMC.2021.3052779

19. Matsuzawa, S., T. Kojima, K. Mizuno, et al. "Electromagnetic simulation of low-frequency magnetic shielding of a welded steel plate," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 6, 1896-1903, 2021.
doi:10.1109/TEMC.2021.3087187

20. Zhang, Z., X. Yang, C. Jiao, et al. "Analytical model for low-frequency magnetic field penetration through a circular aperture on a perfect electric conductor plate," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 5, 2599-1604, 2021.
doi:10.1109/TEMC.2021.3065064

21. Sun, Z., W. Dong, D. Y. Qin, et al. "Approximate simulation of low-frequency magnetic shielding of a rectangular shielding box with all walls perforated periodical holes," Progress In Electromagnetics Research Letters, Vol. 117, 55-72, 2021.

22. Lovat, G., P. Burghignoli, R. Araneo, et al. "Shielding of an imperfect metallic thin circular disk: Exact and low-frequency analytical solution," Progress In Electromagnetics Research, Vol. 167, 1-10, Jan. 2020.
doi:10.2528/PIER19090908

23. "Comsol software," [Online] Available: https://www.comsol.asia/comsol-multiphysics.