Department of Electrical Engineering, Faculty of Engineering and Technology
Jamia Millia Islamia
India
HomepageDepartment of Electrical Engineering, Faculty of Engineering and Technology
Jamia Millia Islamia
India
HomepageDepartment of Electronics and Communication Engineering
SRM Institute of Science and Technology
India
HomepageSchool of Computational and Integrative Sciences
Jawaharlal Nehru University
India
HomepageDepartment of Electronics and Communication Engineering
Feroze Gandhi Institute of Engineering and Technology
India
HomepageUniversity Centre for Research and Development
Chandigarh University
India
Homepage1. Rinne, M. and O. Tirkkonen, "LTE, the radio technology path towards 4G," Computer Communications, Vol. 33, No. 16, 1894-1906, Oct. 15, 2010.
doi:10.1016/j.comcom.2010.07.001
2. Sharma, D., B. K. Kanaujia, and S. Kumar, "Compact multi-standard planar MIMO antenna for IoT/WLAN/sub-6 GHz/X-band applications," Wireless Networks, Vol. 27, 2671-2689, 2021.
doi:10.1007/s11276-021-02612-3
3. Zaidi, A. M., M. T. Beg, B. K. Kanaujia, S. Kumar, and K. Srivastava, "A dual-band branch line coupler for LTE 0.7 GHz and LTE 2.6 GHz frequencies," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 9, e21838, 2019.
doi:10.1002/mmce.21838
4. Khandelwal, M. K., S. Kumar, and B. K. Kanaujia, "Design, modeling and analysis of dualfeed defected ground microstrip patch antenna with wide axial ratio bandwidth," Journal of Computational Electronics, Vol. 17, No. 3, 1019-1028, 2018.
doi:10.1007/s10825-018-1173-1
5. Lee, G. H., S. Kumar, H. C. Choi, and K. W. Kim, "Wideband high-gain double-sided dielectric lens integrated with a dual-bowtie antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 293-297, 2021.
doi:10.1109/LAWP.2020.3048165
6. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, Jun. 6, 2011.
doi:10.1109/MCOM.2011.5783993
7. Qualcomm Technologies, (Dec. 2017), Spectrum for 4G and 5G, Accessed: Jan. 5, 2019, [Online], Available: https://www.qualcomm.com/news/media-center.
8. European 5G Observatory National 5G Spectrum Assignment, Accessed: May 10, 2020, [Online], Available: https://5gobservatory.eu/.
9. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 10, 2013.
10. Busari, S. A., S. Mumtaz, S. Al-Rubaye, and J. Rodriguez, "5G millimeter-wave mobile broadband: Performance and challenges," IEEE Communications Magazine, Vol. 56, No. 6, 137-143, Jun. 18, 2018.
doi:10.1109/MCOM.2018.1700878
11. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proceedings of the IEEE, Vol. 102, No. 3, 366-385, Feb. 5, 2014.
doi:10.1109/JPROC.2014.2299397
12. Tiwari, R. N., P. Singh, B. K. Kanaujia, S. Kumar, and S. K. Gupta, "A low profile dual band MIMO antenna for LTE/Bluetooth/Wi-Fi/WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 9, 1239-1253, 2020.
doi:10.1080/09205071.2020.1716859
13. Kumar, S., G. H. Lee, D. H. Kim, H. C. Choi, and K. W. Kim, "Dual circularly polarized planar four-port MIMO antenna with wide axial-ratio bandwidth," Sensors, Vol. 20, No. 19, 5610, 2020.
doi:10.3390/s20195610
14. Babu, N. S., A. Q. Ansari, B. K. Kanaujia, G. Singh, and S. Kumar, "Compact two-port ultrawideband multiple-input-multiple-output antenna with an electromagnetic band gap structure," Materials Today: Proceedings, Mar. 27, 2023.
15. Srivastava, K., S. Kumar, B. K. Kanaujia, S. Dwari, H. C. Choi, and K. W. Kim, "Compact eightport MIMO/diversity antenna with band rejection characteristics," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 5, e22170, 2020.
doi:10.1002/mmce.22170
16. Khalid, M., S. Iffat Naqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, and Y. Amin, "4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, Jan. 1, 2020.
doi:10.3390/electronics9010071
17. Gupta, S., Z. Briqech, A. R. Sebak, and T. A. Denidni, "Mutual-coupling reduction using metasurface corrugations for 28 GHz MIMO applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2763-2766, Aug. 25, 2017.
18. Zhang, Y., J. Y. Deng, M. J. Li, D. Sun, and L. X. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 747-751, Feb. 27, 2019.
doi:10.1109/LAWP.2019.2901961
19. Tariq, S., S. I. Naqvi, N. Hussain, and Y. Amin, "A metasurface-based MIMO antenna for 5G millimeter-wave applications," IEEE Access, Vol. 9, 51805-51817, Mar. 29, 2021.
20. Elabd, R. H., H. H. Abdullah, and M. Abdelazim, "Compact highly directive MIMO vivaldi antenna for 5G millimeter-wave base station," Journal of Infrared, Millimeter, and Terahertz Waves , Vol. 42, 173-194, Feb. 2021.
doi:10.1007/s10762-020-00765-4
21. Murthy, N., "Improved isolation metamaterial inspiredmm-Wave MIMO dielectric resonator antenna for 5G application," Progress In Electromagnetics Research C, Vol. 100, 247-261, 2020.
doi:10.2528/PIERC19112603
22. Akbari, M., H. A. Ghalyon, M. Farahani, A. R. Sebak, and T. A. Denidni, "Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems," IEEE Access, Vol. 5, 6527-6537, Apr. 18, 2017.
23. Farahani, M., J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, "Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarizationrotator wall," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2324-2327, Jun. 20, 2017.
24. Iqbal, A., A. Basir, A. Smida, N. K. Mallat, I. Elfergani, J. Rodriguez, and S. Kim, "Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, Aug. 8, 2019.
25. Hussain, N., M. J. Jeong, A. Abbas, and N. Kim, "Metasurface-based single-layer wideband circularly polarized MIMO antenna for 5G millimeter-wave systems," IEEE Access, Vol. 8, 130293-130304, Jul. 15, 2020.
26. Sharawi, M. S., S. K. Podilchak, M. T. Hussain, and Y. M. Antar, "Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices," IET Microwaves, Antennas & Propagation, Vol. 11, No. 2, 287-293, Jan. 2017.
doi:10.1049/iet-map.2016.0457
27. Hussain, N., M. J. Jeong, J. Park, and N. A. Kim, "A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, Apr. 2, 2019.
28. Abo El-Hassan, M., K. F. Hussein, and K. H. Awadalla, "Microstrip antenna with L-shaped slots for circularly polarised satellite applications," The Journal of Engineering, Vol. 2019, No. 12, 8428-8431, Dec. 2019.
doi:10.1049/joe.2019.0921
29. Qian, Y., R. Coccioli, D. Sievenpiper, V. Radisic, E. Yablonovitch, and T. Itoh, "A microstrip patch antenna using novel photonic band-gap structures," Microwave Journal, Vol. 42, No. 1, 66-72, Jan. 1, 1999.
30. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 14, 2003.
doi:10.1109/TAP.2003.817983
31. Kumar, A., J. Mohan, and H. Gupta, "Surface wave suppression of microstrip antenna using different EBG designs," 2015 International Conference on Signal Processing and Communication (ICSC) , 355-359, IEEE, Mar. 16, 2015.
32. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001
33. Yang, F. and Y. R. Sami, "The effects of an electromagnetic bandgap (EBG) structure on two element microstrip patch antenna array," IEEE Transactions Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983
34. Abdulhameed, M. K., M. M. Isa, Z. Zakaria, M. K. Mohsin, and M. L. Attiah, "Mushroom-like EBG to improve patch antenna performance for C-band satellite application," International Journal of Electrical and Computer Engineering, Vol. 8, No. 5, 3875, Oct. 1, 2018.
35. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, Oct. 14, 2003.
doi:10.1109/TAP.2003.817559
36. Al-Dulaimi, Z., T. A. Elwi, and D. C. Atilla, "Design of a meander line monopole antenna array based hilbert-shaped reject band structure for MIMO applications," IETE Journal of Research, Vol. 68, No. 4, 2353-2362, Jul. 4, 2022.
doi:10.1080/03772063.2020.1743207
37. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, May 1, 2003.
doi:10.1049/el:20030495
38. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 218-232, Oct. 2013.
doi:10.1109/MAP.2013.6735522
39. Chae, S. H., S. K. Oh, and S. O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 122-125, Apr. 10, 2007.
40. De Cos Gomez, M. E., H. Fernandez Alvarez, and F. Las-Heras Andres, "PP-based 24 GHz wearable antenna," Wireless Networks, 1-6, Oct. 16, 2023.