Vol. 178
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-12-29
Full-Wave Electromagnetic Simulations of Forests at L-Band by Using Fast Hybrid Method
By
Progress In Electromagnetics Research, Vol. 178, 111-127, 2023
Abstract
Wave propagation in forests at L-band has essential applications in satellite communication system design, foliage penetration (FOPEN), and remote sensing of forest canopy and soil using passive, active, and reflectometry techniques. In this work, we propose applying the fast hybrid method (FHM) for full wave simulations of forests. The FHM significantly improves CPU time and memory efficiency for full-wave electromagnetic solutions. In this paper, we present simulations of forests of up to 72 trees with heights up to 13 m with FHM. Spatial distributions of electric fields at the bottom plane of the trees are illustrated, showing constructive and destructive interferences. The electric field distributions show that the amplitudes of the electric fields can be as large as twice that of incident waves. The transmissivities are computed and averaged over realizations based on the electric fields underneath the forest. The simulations were performed on a desktop and required a CPU time of only 1346 seconds and the memory of 16.5 GB for the case of 72 13-m tall trees, demonstrating that the FHM method is substantially more efficient than the available commercial software. The results show that the L-band signals can penetrate forests to sense the soil moisture and detect targets hidden within forests, as evidenced by significant electric field intensities under forest canopies. Also, we illustrate that GPS signals can penetrate forests and be successfully received by GPS receivers. In the study on clustering effects, we present two distinct solutions for transmissivities, each corresponding to different spatial distributions of trees while maintaining the same average tree density.
Citation
Jongwoo Jeong, Leung Tsang, Andreas Colliander, and Simon Yueh, "Full-Wave Electromagnetic Simulations of Forests at L-Band by Using Fast Hybrid Method," Progress In Electromagnetics Research, Vol. 178, 111-127, 2023.
doi:10.2528/PIER23082204
References

1. Jiang, Shan, Q. Zhu, C.-X. Wang, et al., "Map-based UAV mmWave channel model and characteristics analysis," 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops), 23-28, Chongqing, China, Aug. 2020.
doi:10.1109/icccworkshops49972.2020.9209911

2. Le Palud, M., T. Dupaquier, and L. Bertel, "Experimental study of VHF propagation in forested environment and modelling techniques," Record of the IEEE 2000 International Radar Conference, 539-544, Alexandria, VA, USA, May 2000.
doi:10.1109/RADAR.2000.851891

3. Le Palud, M., "Propagation modeling of VHF radio channel in forest environments," IEEE MILCOM 2004. Military Communications Conference, Vol. 2, 609-614, Monterey, CA, USA, Oct. 2004.

4. Davis, Mark E., "Developments in foliage penetration radar," 2009 International Radar Conference ``Surveillance for a Safer World'' (RADAR 2009), 1-6, Bordeaux, France, 2009.

5. Vint, David, Matthew Anderson, Yuhao Yang, Christos Ilioudis, Gaetano Di Caterina, and Carmine Clemente, "Automatic target recognition for low resolution foliage penetrating SAR images using CNNs and GANs," Remote Sensing, Vol. 13, No. 4, 596, Feb. 2021.
doi:10.3390/rs13040596

6. Jaramillo, Monica R., "Computational electromagnetic modeling (CEM) of foliage penetration (FOPEN)," Ph.D. dissertation, Electrical and Computer Engineering, University of New Mexico, 2021.

7. Kim, Joonsuk, Il-Suek Koh, and Yongshik Lee, "Simulation of passive time-reversal surveillance system for detection of target invasion inside forested environment," 2016 International Symposium on Antennas and Propagation (ISAP), 318-319, Okinawa, Japan, Oct. 2016.

8. Oré, Gian, A. Santos, D. Ukan, et al., "Ant nests detection in industrial forests by SAR P-band tomography," 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2022), 4791-4794, Kuala Lumpur, Malaysia, Jul. 2022.
doi:10.1109/IGARSS46834.2022.9884086

9. Colliander, Andreas, M. H. Cosh, A. Berg, et al., "Development of SMAP retrievals for forested regions: SMAPVEX19-22 and SMAPVEX22-Boreal," 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2022), 4228-4231, Kuala Lumpur, Malaysia, Jul. 2022.
doi:10.1109/IGARSS46834.2022.9884441

10. Liao, Tien-Hao and Seung-Bum Kim, "Dual-frequency retrieval of soil moisture from L- and S-band radar data for corn and soybean," Remote Sensing, Vol. 14, No. 22, 5875, Nov. 2022.
doi:10.3390/rs14225875

11. Park, Jeonghwan, Rajat Bindlish, Alexandra Bringer, Dustin Horton, and Joel T. Johnson, "Soil moisture retrieval using a time-series ratio algorithm for the NISAR mission," 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 5873-5876, Brussels, Belgium, 2021.

12. Siqueira, Paul, J. Armston, B. Chapman, et al., "Ecosystem sciences with NISAR," 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 547-549, Brussels, Belgium, 2021.

13. Liu, Dawei, Yang Du, Guoqing Sun, Wen-Zhe Yan, and Bae-Ian Wu, "Analysis of InSAR sensitivity to forest structure based on radar scattering model," Progress In Electromagnetics Research, Vol. 84, 149-171, 2008.

14. Campbell, James D., R. Akbar, A. Bringer, et al., "Intercomparison of electromagnetic scattering models for Delay-Doppler maps along a CYGNSS land track with topography," IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, No. 2007413, 1-13, Sep. 2022.
doi:10.1109/TGRS.2022.3210160

15. Unwin, Martin J., Nazzareno Pierdicca, Estel Cardellach, Kimmo Rautiainen, Giuseppe Foti, Paul Blunt, Leila Guerriero, Emanuele Santi, and Michel Tossaint, "An introduction to the HydroGNSS GNSS reflectometry remote sensing mission," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, 6987-6999, 2021.
doi:10.1109/JSTARS.2021.3089550

16. Camps, Adriano, Alberto Alonso-Arroyo, Hyuk Park, Raul Onrubia, Daniel Pascual, and Jorge Querol, "L-band vegetation optical depth estimation using transmitted GNSS signals: Application to GNSS-reflectometry and positioning," Remote Sensing, Vol. 12, No. 15, 2352, Aug. 2020.
doi:10.3390/rs12152352

17. Colliander, Andreas, R. H. Reichle, W. T. Crow, et al., "Validation of soil moisture data products from the NASA SMAP mission," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 15, 364-392, 2022.
doi:10.1109/JSTARS.2021.3124743

18. Ulaby, F. T., K. Sarabandi, K. McDonald, M. Whitt, and M. C. Dobson, "Michigan microwave canopy scattering model," International Journal of Remote Sensing, Vol. 11, No. 7, 1223-1253, Jul. 1990.
doi:10.1080/01431169008955090

19. Lang, R. H. and J. S. Sighu, "Electromagnetic backscattering from a layer of vegetation: a discrete approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 21, No. 1, 62-71, Jan. 1983.
doi:10.1109/TGRS.1983.350531

20. Gu, Weihui, Leung Tsang, Andreas Colliander, and Simon H. Yueh, "Multifrequency full-wave simulations of vegetation using a hybrid method," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 1, 275-285, Jan. 2022.
doi:10.1109/TMTT.2021.3107313

21. Gu, Weihui, Leung Tsang, Andreas Colliander, and Simon Yueh, "Hybrid method for full-wave simulations of forests at L-Band," IEEE Access, Vol. 10, 105898-105909, 2022.
doi:10.1109/ACCESS.2022.3211323

22. Jeong, Jongwoo, Leung Tsang, Weihui Gu, Andreas Colliander, and Simon H. Yueh, "Wave propagation in vegetation field by combining fast multiple scattering theory and numerical electromagnetics in a hybrid method," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 4, 3598-3610, Apr. 2023.
doi:10.1109/TAP.2023.3242418

23. Huang, Huanting, Leung Tsang, Eni G. Njoku, Andreas Colliander, Tien-Hao Liao, and Kung-Hau Ding, "Propagation and scattering by a layer of randomly distributed dielectric cylinders using monte carlo simulations of 3D Maxwell equations with applications in microwave interactions with vegetation," IEEE Access, Vol. 5, 11985-12003, 2017.
doi:10.1109/ACCESS.2017.2714620

24. Huang, Huanting, Leung Tsang, Andreas Colliander, and Simon H. Yueh, "Propagation of waves in randomly distributed cylinders using three-dimensional vector cylindrical wave expansions in foldy-lax equations," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 214-226, Dec. 2019.
doi:10.1109/JMMCT.2019.2948022

25. Gu, Weihui, Leung Tsang, Andreas Colliander, and Simon H. Yueh, "Wave propagation in vegetation field using a hybrid method," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6752-6761, Oct. 2021.
doi:10.1109/TAP.2021.3069487

26. CHAN, C. H. and L. Tsang, "A sparse-matrix canonical-grid method for scattering by many scatterers," Microwave and Optical Technology Letters, Vol. 8, No. 2, 114-118, Feb. 1995.
doi:10.1002/mop.4650080217

27. Jeong, Jongwoo, Leung Tsang, Xiaolan Xu, Simon H. Yueh, and Steven A. Margulis, "Full-wave electromagnetic model simulations of P-band radio signal propagation through forest using the fast hybrid method," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 16, 6711-6722, Jul. 2023.
doi:10.1109/JSTARS.2023.3292324

28. Mastorakis, Eleftherios, Panagiotis J. Papakanellos, Hristos T. Anastassiu, and Nikolaos L. Tsitsas, "Analysis of electromagnetic scattering from large arrays of cylinders via a hybrid of the method of auxiliary sources (MAS) with the fast multipole method (FMM)," Mathematics, Vol. 10, No. 17, 3211, Sep. 2022.
doi:10.3390/math10173211

29. Blankrot, Boaz and Yehuda Leviatan, "FMM-accelerated source-model technique for many-scatterer problems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4379-4384, Aug. 2017.
doi:10.1109/TAP.2017.2717961

30. Leonor, Nuno R., Telmo R. Fernandes, Manuel García Sánchez, and Rafael F. S. Caldeirinha, "A 3-D model for millimeter-wave propagation through vegetation media using ray-tracing," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4313-4318, Jun. 2019.
doi:10.1109/TAP.2019.2905957

31. Tsang, Leung, Jin Au Kong, Kung-Hau Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Theories and Applications, Vol. 15, Wiley, New York, NY, USA, 2001.

32. Altair Feko, Altair Enc, Inc., www.altairhyperworks.com/feko.

33. Piepmeier, Jeffrey R., P. Focardi, K. A. Horgan, et al., "SMAP L-band microwave radiometer: instrument design and first year on orbit," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 4, 1954-1966, Apr. 2017.
doi:10.1109/TGRS.2016.2631978

34. Tsang, Leung, Tien-Hao Liao, Ruoxing Gao, Haokui Xu, Weihui Gu, and Jiyue Zhu, "Theory of microwave remote sensing of vegetation effects, SoOp and rough soil surface backscattering," Remote Sensing, Vol. 14, No. 15, Aug. 2022.
doi:10.3390/rs14153640

35. Lee, Woochan and Dan Jiao, "Fast structure-aware direct time-domain finite-element solver for the analysis of large-scale On-Chip circuits," IEEE Transactions on Components Packaging and Manufacturing Technology, Vol. 5, No. 10, 1477-1487, Oct. 2015.
doi:10.1109/TCPMT.2015.2472403