Vol. 114
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-02
Study on the Influence of the Inclination Angle of the Insulator on the Deformation and Flashover Behaviour of Water Droplet Under ac Field
By
Progress In Electromagnetics Research Letters, Vol. 114, 91-95, 2023
Abstract
The separation of water droplets on the insulator umbrella surface is an important factor that increases the probability of flashover along the surface. Previous studies have only investigated the motion and deformation of water droplets on the horizontal insulator sample surface and their effect on flashover voltage. In actual composite insulators, the umbrella skirt surface is usually inclined at a certain angle. The influence of the umbrella angle on the motion law and flashover voltage of water droplets has not been fully studied in recent research. In this paper, focusing on the separated water droplet on insulator sample surfaces with different inclination angles, the motion modes and flashover characteristics of the water droplet are studied by using multi-physics finite element simulation and AC flashover experiment. The results show that the motion modes of water droplets changes with the inclination angle of the umbrella surface. The water droplet oscillates left and right under the AC electric field when the inclination angle is small. As the inclination angle increases, the oscillating trend of the water droplet weakens. When the inclination angle is large enough, the deformation of the water droplet shows two forms: sliding and stretching. As the inclination angle of the umbrella surface increases, the flashover voltage decreases, and the decreasing trend of the flashover voltage is greater when the inclination angle is larger.
Citation
Wen Cao, Shenjian Huang, Wei Shen, Zhentao Li, Te Yang, and Jun Zhou, "Study on the Influence of the Inclination Angle of the Insulator on the Deformation and Flashover Behaviour of Water Droplet Under ac Field," Progress In Electromagnetics Research Letters, Vol. 114, 91-95, 2023.
doi:10.2528/PIERL23081501
References

1. Zhang, F. L., "Analysis and determination on shape of outer insulation surface structures of compound insulators," Electric Power Construction, Vol. 24, 26-28, 2003 (in Chinese).

2. Li, R. F., C. J. Wang, S. Hu, W. Hao, X. Q. Xu, and X. Sun, "The impact of the sheds root thickness and inclination size of composite insulator on field intensity," Southern Power Grid Technology, Vol. 7, 114-118, 2013 (in Chinese).

3. Wei, Shichao, Haiyun Jin, Huimin Zhou, Kunpeng Yang, Naikui Gao, and Wen Li, "Dynamic behavior of water droplets on wetted superhydrophobic surfaces under a high AC electric field," AIP Advances, Vol. 9, 065307, Jun. 2019.
doi:10.1063/1.5098303

4. Cao, W., Y. S. Wu, H. Xue, Z. T. Li, J. Wu, and J. Zhou, "DC flashover model of silicone rubber surface considering the dynamic behavior of water droplet," High Voltage Technique, Vol. 49, No. 5, 2101-2110, 2023 (in Chinese).

5. Ndoumbe, J., A. Beroual, and A. M. Imano, "Simulation and analysis of coalescence of water droplets on composite insulating surface under DC electric field," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 5, 2669-2675, Oct. 2015.
doi:10.1109/TDEI.2015.004820

6. Blackmore, P. and D. Birtwhistle, "Surface discharges on polymeric insulator shed surfaces," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 4, No. 2, 210-217, Apr. 1997.
doi:10.1109/94.595248

7. Nazemi, M. H. and V. Hinrichsen, "Experimental investigations on water droplet oscillation and partial discharge inception voltage on polymeric insulating surfaces under the influence of AC electric field stress," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 20, No. 2, 443-453, Apr. 2013.
doi:10.1109/TDEI.2013.6508746

8. Nazemi, M. H. and V. Hinrichsen, "Partial discharge inception electric field strength of water droplets on polymeric insulating surfaces," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 2, 1088-1096, Apr. 2015.
doi:10.1109/TDEI.2015.7076810

9. Beroual, A., "Dynamics of water droplets immersed in dielectric liquids submitted to electric stress," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 1, 359-365, Feb. 2015.
doi:10.1109/TDEI.2014.004754

10. Löwe, Jens-Michael, Volker Hinrichsen, I. V. Roisman, and Cameron Tropea, "Behavior of charged and uncharged drops in high alternating tangential electric fields," Physical Review E, Vol. 101, No. 2, Feb. 2020.
doi:10.1103/PhysRevE.101.023102

11. Cao, W., M. J. Luan, W. Shen, H. Q. Wang, Y. Tian, and X. B. Huang, "Dynamic behavior of water droplets on AC composite insulator surface and its influence on flashover," Electric Machines and Control, Vol. 24, No. 2, 151-158, 2020 (in Chinese).

12. Cao, Wen, Hao Xue, Wei Shen, Hao Yang, Long Zhao, and Yang Wang, "The effect of dynamic behaviours of the water droplet on DC/AC flashover performance on silicone rubber surface: Experiment, simulation and theoretical analysis," High Voltage, Vol. 6, No. 4, 637-646, Aug. 2021.
doi:10.1049/hve2.12082