Vol. 121
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-12-02
A Novel Balanced-to-Unbalanced All-Port Reflectionless Filtering Power Divider Without Loading Additional Absorptive Branches at Input and Output Ports
By
Progress In Electromagnetics Research M, Vol. 121, 157-167, 2023
Abstract
A novel balanced-to-unbalanced (BTU) all-port reflectionless filtering power divider without loading additional absorptive branches at input and output ports is proposed in this paper. The proposed power divider includes two reflectionless filtering networks, four transmission lines, a phase inverter, and two isolation resistors. Unlike the existing filtering power dividers that require additional absorptive branches to be loaded at each port to achieve reflectionlessness at all ports, the proposed power divider achieves all-port reflectionlessness by embedding only two reflectionless filtering networks in the BTU power dividing circuit. Meanwhile, this reflectionless filtering network also introduces two transmission zeros located at the lower and upper sides of the passband, respectively, for high selectivity. To validate the proposed power divider topology, a 2.0-GHz BTU filtering power divider is designed and fabricated with a 3-dB filtering bandwidth of 40.1%. The 10-dB reflectionless bandwidth for the balanced port is 98.7% from 0.940 to 2.772 GHz and that for the unbalanced ports covers the entire measurement frequency from 0.5 to 3.5 GHz, achieving good all-port reflectionless characteristics.
Citation
Qi Chen, Huabin Zhang, Zhongbao Wang, Hongmei Liu, and Shao-Jun Fang, "A Novel Balanced-to-Unbalanced All-Port Reflectionless Filtering Power Divider Without Loading Additional Absorptive Branches at Input and Output Ports," Progress In Electromagnetics Research M, Vol. 121, 157-167, 2023.
doi:10.2528/PIERM23081404
References

1. Mahon, Steven, "The 5G effect on RF filter technologies," IEEE Transactions on Semiconductor Manufacturing, Vol. 30, No. 4, 494-499, Nov. 2017.
doi:10.1109/TSM.2017.2757879

2. Zhang, Bo, Yongle Wu, and Yuanan Liu, "Wideband single-ended and differential bandpass filters based on terminated coupled line structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 3, 761-774, Mar. 2017.
doi:10.1109/TMTT.2016.2628741

3. Feng, Wenjie, Wenquan Che, and Quan Xue, "Balanced filters with wideband common mode suppression using dual-mode ring resonators," IEEE Transactions on Circuits and Systems I-regular Papers, Vol. 62, No. 6, 1499-1507, Jun. 2015.
doi:10.1109/TCSI.2015.2423752

4. Li, Zhao, Feng Wei, Bo Liu, and Xiao Wei Shi, "Design of balanced wideband BPF based on tri-mode slotline resonators," IEEE Transactions on Circuits and Systems Ii-express Briefs, Vol. 69, No. 6, 2767-2771, Jun. 2022.
doi:10.1109/TCSII.2022.3159820

5. Feng, Wenjie, Xin Gao, Wenquan Che, Wanchen Yang, and Quan Xue, "High selectivity wideband balanced filters with multiple transmission zeros," IEEE Transactions on Circuits and Systems Ii-express Briefs, Vol. 64, No. 10, 1182-1186, Oct. 2017.
doi:10.1109/TCSII.2015.2482398

6. Pednekar, Prathamesh H., William Hallberg, Christian Fager, and Taylor Wallis Barton, "Analysis and design of a Doherty-like RF-input load modulated balanced amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 12, 5322-5335, Dec. 2018.
doi:10.1109/TMTT.2018.2869571

7. He, Ding, Minyuan Yu, Jiaxuan Li, and Zhongjun Yu, "An 18-50-GHz double-balanced Gaas mixer using novel ultrawideband balun," IEEE Microwave and Wireless Technology Letters, Vol. 33, No. 6, 723-726, Jun. 2023.
doi:10.1109/LMWT.2023.3242336

8. Zhang, Gang, Qiyun Zhang, Qianwen Liu, Wanchun Tang, and Jiquan Yang, "Design of a new dual-band balanced-to-balanced filtering power divider based on the circular microstrip patch resonator," IEEE Transactions on Circuits and Systems Ii-express Briefs, Vol. 68, No. 12, 3542-3546, Dec. 2021.
doi:10.1109/TCSII.2021.3082256

9. Li, Hui-Yang, Jin-Xu Xu, and Xiu Yin Zhang, "Miniaturized balanced filtering power dividers with arbitrary power division ratio using multimode dielectric resonator in single cavity," IEEE Transactions on Circuits and Systems Ii-express Briefs, Vol. 69, No. 6, 2707-2711, Jun. 2022.
doi:10.1109/TCSII.2022.3144574

10. Xia, Bin, Lin-Sheng Wu, Si-Wei Ren, and Jun-Fa Mao, "A balanced-to-balanced power divider with arbitrary power division," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 8, 2831-2840, Aug. 2013.
doi:10.1109/TMTT.2013.2268739

11. Wu, Lin-Sheng, Yong-Xin Guo, and Jun-Fa Mao, "Balanced-to-balanced Gysel power divider with bandpass filtering response," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4052-4062, Dec. 2013.
doi:10.1109/TMTT.2013.2287684

12. Yadav, Amar Nath and Ratnajit Bhattacharjee, "Balanced to unbalanced power divider with arbitrary power ratio," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 11, 885-887, Nov. 2016.
doi:10.1109/LMWC.2016.2615006

13. Feng, Wenjie, Meiling Hong, Mengzhu Xun, and Wenquan Che, "A novel wideband balanced-to-unbalanced power divider using symmetrical transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 4, 338-340, Apr. 2017.
doi:10.1109/LMWC.2017.2678403

14. Huang, Feng and Lei Zhu, "Balanced-to-unbalanced filtering in-phase power divider based on 2-D patch resonator," IEEE Microwave and Wireless Technology Letters, Vol. 33, No. 4, 399-402, Apr. 2023.
doi:10.1109/LMWT.2022.3225463

15. Gao, Xin, Wenjie Feng, Wenquan Che, and Quan Xue, "Wideband balanced-to-unbalanced filtering power dividers based on coupled lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 1, 86-95, Jan. 2017.
doi:10.1109/TMTT.2016.2614668

16. Zhuang, Zheng, Yongle Wu, Lingxiao Jiao, Weimin Wang, and Yuanan Liu, "Wideband balanced-to-unbalanced filtering unequal power divider with wide stopband and isolation," Electronics Letters, Vol. 53, No. 13, 892-893, Jun. 22 2017.
doi:10.1049/el.2017.1249

17. Xu, Kai, Jin Shi, Longlong Lin, and Jian-Xin Chen, "A balanced-to-unbalanced microstrip power divider with filtering function," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 8, 2561-2569, Aug. 2015.
doi:10.1109/TMTT.2015.2445051

18. Qiu, Liang-Feng, Lin-Sheng Wu, Wen-Yan Yin, and Jun-Fa Mao, "Absorptive bandstop filter with prescribed negative group delay and bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 639-641, Jul. 2017.
doi:10.1109/LMWC.2017.2711572

19. Luo, Cong, Sai-Wai Wong, Jing-Yu Lin, Yang Yang, Yin Li, Xu-Zhou Yu, Lin-Ping Feng, Zhi-Hong Tu, and Lei Zhu, "Quasi-reflectionless microstrip bandpass filters using bandstop filter for out-of-band improvement," IEEE Transactions on Circuits and Systems Ii-express Briefs, Vol. 67, No. 10, 1849-1853, Oct. 2020.
doi:10.1109/TCSII.2019.2946915

20. Gomez-Garcia, Roberto, Jose-Maria Munoz-Ferreras, and Dimitra Psychogiou, "Dual-behavior resonator-based fully reconfigurable input reflectionless bandpass filters," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 1, 35-37, Jan. 2019.
doi:10.1109/LMWC.2018.2884151

21. Gomez-Garcia, Roberto, Jose-Maria Munoz-Ferreras, and Dimitra Psychogiou, "RF reflectionless filtering power dividers," IEEE Transactions on Circuits and Systems Ii-express Briefs, Vol. 66, No. 6, 933-937, Jun. 2019.
doi:10.1109/TCSII.2018.2875172

22. Lce, Boyoung, Seunggoo Nam, and Juseop Lee, "Filtering power divider with reflectionless response and wide isolation at output ports," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 7, 2684-2692, Jul. 2019.
doi:10.1109/TMTT.2019.2913650

23. Zhu, Ya-Hui, Jing Cai, Yue Cao, and Jian-Xin Chen, "Compact wideband absorptive filtering power divider with a reused composite t-shape network," IEEE Transactions on Circuits and Systems Ii-express Briefs, Vol. 70, No. 3, 899-903, Mar. 2023.
doi:10.1109/TCSII.2022.3217462

24. Lee, Boyoung, Jongheun Lee, Gyuwon Lee, and Juseop Lee, "All-port-reflectionless narrowband filtering power divider topology with generic equations," IEEE Transactions on Circuits and Systems I-regular Papers, Vol. 69, No. 4, 1417-1426, Apr. 2022.
doi:10.1109/TCSI.2021.3133585

25. ZYSMAN, GI and AK JOHNSON, "Coupled transmission line networks in an inhomogeneous dielectric medium," IEEE Transactions on Microwave Theory and Techniques, Vol. MT17, No. 10, 753-759, 1969.
doi:10.1109/TMTT.1969.1127055

26. Velázquez-Ahumada, MD, J Martel, and F Medina, "Parallel coupled microstrip filters with floating ground-plane conductor for spurious-band suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1823-1828, May 2005.
doi:10.1109/TMTT.2005.847083