Vol. 178
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-09-25
Polarization-Wavelength Locked Plasmonic Topological States
By
Progress In Electromagnetics Research, Vol. 178, 37-47, 2023
Abstract
Plasmonic topological states, providing a new way to bypass the diffraction limits and against fabrication disorders, have attracted intense attention. In addition to the near-field coupling and band topology, the localized surface plasmonic resonance modes can be manipulated with far-field degrees of freedom (DoFs), such as polarization. However, changing the frequency of the topological edge states with different polarized incident waves remains a challenge, which has led to significant interest in multiplexed radiative topological devices. Here, we report the realization of polarization-wavelength locked plasmonic topological edge states on the Su-Schrieffer-Heeger (SSH) model. We theoretically and numerically show that such phenomenon is based on two mechanisms, i.e., the splitting in the spectra of plasmonic topological edge states with different intrinsic parity DoF and projecting the far-field polarizations to the parity of lattice modes. These results promise applications in robust optical emitters and multiplexed photonic devices.
Citation
Yuan-Zhen Li, Zijian Zhang, Hongsheng Chen, and Fei Gao, "Polarization-Wavelength Locked Plasmonic Topological States," Progress In Electromagnetics Research, Vol. 178, 37-47, 2023.
doi:10.2528/PIER23081008
References

1. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.
doi:10.1007/0-387-37825-1

2. Giannini, V., A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, "Plasmonic nanoantennas: Fundamental and their use in controlling the radiative properties of nanoemmitters," Chem. Rev., Vol. 111, 3888-3912, 2011.
doi:10.1021/cr1002672

3. Lu, L., J. D. Joannopoulos, and M. Spljacic, "Topological photonics," Nature Photonics, Vol. 8, 821-829, 2014.
doi:10.1038/nphoton.2014.248

4. Ozawa, T., H. M. Price, A. Amo, et al. "Topological photonics," Rev. Mod. Phys., Vol. 91, 015006, 2019.
doi:10.1103/RevModPhys.91.015006

5. Shastri, K., M. I. Abdelrahman, and F. Monticone, "Nonreciprocal and topological plasmonics," Photonics, Vol. 8, 133, 2021.
doi:10.3390/photonics8040133

6. Zhuang, W., X. Chen, and F. Ye, "Plasmonic topological insulators for topological nanophotonics," Optics Letters, Vol. 42, No. 20, 4063-4066, 2017.
doi:10.1364/OL.42.004063

7. Leykam, D. and L. Yuan, "Topological phases in ring resonators: Recent progress and future prospects," Nanophotonics, Vol. 9, No. 15, 4473-4487, 2020.
doi:10.1515/nanoph-2020-0415

8. Su, W. P., J. R. Schrieffer, and A. J. Heeger, "Solitons in Polyacetylene,", Vol. 45, No. 25, 1979.

9. Malkova, N., I. Hromada, X. Wang, G. Bryant, and Z. Chen, "Observation of optical Shockley-like surface states in photonic superlattices," Optics Letters, Vol. 34, No. 11, 1633-1635, 2009.
doi:10.1364/OL.34.001633

10. Xiao, M., Z. Q. Zhang, and C. T. Chan, "Surface impedance and bulk band geometric phases in one-dimensional system," Physical Review X, Vol. 4, 021017, 2014.
doi:10.1103/PhysRevX.4.021017

11. Miert, G. V. and C. Ortix, "Excess charges as a probe of one-dimensional topological crystalline insulating phases," Physical Review B, Vol. 96, 235130, 2017.
doi:10.1103/PhysRevB.96.235130

12. Chen, T., Y. Yu, Y. Song, D. Yu, H. Ye, J. Xie, X. Shen, Y. Pan, and Q. Cheng, "Distinguishing the topological zero mode and Tamm mode in a microwave waveguide array," Ann. Phys. (Berlin), Vol. 531, 1900347, 2019.
doi:10.1002/andp.201900347

13. Li, G., L. Wang, R. Ye, Y. Zheng, D.-W. Wang, X.-J. Liu, A. Dutt, L. Yuan, and X. Chen, "Direct extraction of topological Zak phase with the synthetic dimension," Light: Science & Applications, Vol. 12, No. 1, 81, 2023.
doi:10.1038/s41377-023-01126-1

14. Pocock, S. R., X. Xiao, P. A. Huidobro, and V. Giannini, "Topological plasmonic chain with retardation and radiative effects," ACS Photonics, Vol. 5, 2271-2279, 2018.
doi:10.1021/acsphotonics.8b00117

15. Compaijen, P. J., V. A. Malyshev, and J. Knoester, "Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions," Physical Review B, Vol. 9, 085428, 2018.
doi:10.1103/PhysRevB.97.085428

16. Wu, R. P. H. and H. C. Ong, "Small mode volume topological photonic states in one-dimensional lattices with dipole-quadrupole interactions," Physical Review Research, Vol. 4, 023233, 2022.
doi:10.1103/PhysRevResearch.4.023233

17. Zhang, M.-X., Z. Zhou, L. Yan, L. Zhang, and J.-Y. Yan, "Polarization-induced topological phase transition in zigzag chains composed of metal nanoparticles," J. Appl. Phys., Vol. 129, 243103, 2021.
doi:10.1063/5.0054141

18. Moritake, Y., M. Ono, and M. Notomi, "Far-field optical imaging of topological edge states in zigzag plasmonic chains," Nanophotonics, Vol. 11, No. 9, 2183-2189, 2022.
doi:10.1515/nanoph-2021-0648

19. Zheng, J., Z. Guo, Y. Sun, H. Jiang, Y. Li, and H. Chen, "Topological edge modes in one-dimensional photonic artificial structures," Progress In Electromagnetics Research, Vol. 178, 1-20, 2023.
doi:10.2528/PIER22101202

20. Sinev, I. S., I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, "Mapping plasmonic topological states at the nanoscale," Nanoscale, Vol. 7, 11904, 2015.
doi:10.1039/C5NR00231A

21. Hu, P., L. Chen, A. P. Shkurinov, Y. Zhu, and S. Zhuang, "Observation of topological transmission in terahertz domino waveguide array," IEEE Transaction of Terahertz Science and Technology, Vol. 13, No. 4, 337-346, 2023.
doi:10.1109/TTHZ.2023.3275270

22. Poddubny, A., A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, "Topological Majorana states in zigzag chains of plasmonic nanoparticles," ACS Photonics, Vol. 1, 101-105, 2014.
doi:10.1021/ph4000949

23. Downing, C. A. and G. Weick, "Topological collective plasmons in bipartite chains of metallic nanoparticles," Physical Review B, Vol. 95, 125426, 2017.
doi:10.1103/PhysRevB.95.125426

24. Bleckmann, F., Z. Cherpakova, S. Linden, and A. Alberti, "Spectral imaging of topological edge states in plasmonic waveguide arrays," Physical Review B, Vol. 96, 045417, 2017.
doi:10.1103/PhysRevB.96.045417

25. Ling, C. W., M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, "Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles," Optics Ecpress, Vol. 23, No. 3, 2021-2031, 2015.
doi:10.1364/OE.23.002021

26. Giannini, V., G. Vecchi, and J. G. Rivas, "Lighting up multipolar surface plasmon polaritons by collective resonances in array of nanoantennas," Physical Review Letters, Vol. 105, 266801, 2010.
doi:10.1103/PhysRevLett.105.266801

27. Solnyshkov, D. D., A. V. Nalitov, and G. Malpuech, "Kibble-Zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars," Physical Review Letters, Vol. 116, 046402, 2016.
doi:10.1103/PhysRevLett.116.046402

28. Chen, Z.-Y., L.-S. Yan, Y. Pan, L. Jiang, A.-L. Yi, W. Pan, and B. Luo, "Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission," Light: Science & Applications, Vol. 6, e16207, 2017.

29. Zhou, W., M. Dridi, J. Y. Suh, C. H. Kin, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, "Lasing action in strongly coupled plasmonic nanocavity arrays," Nature Nanotechnology, Vol. 8, 506-511, 2013.
doi:10.1038/nnano.2013.99

30. Wang, H., J.-W. Pan, et al. "Towards optimal single-photon sources from polarized microcavities," Nature Photonics, Vol. 13, 770-775, 2019.
doi:10.1038/s41566-019-0494-3

31. Wellbrock, G. and T. J. Xia, "The road to 100G deployment," IEEE Communications Magazine, Vol. 48, S14, 2010.
doi:10.1109/MCOM.2010.5434373

32. Garcia-Vidal, F. J., L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A: Pure Appl. Opt., Vol. 7, S97, 2005.
doi:10.1088/1464-4258/7/2/013

33. Pros, A., E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, "Localized spoof plasmons arise while texturing closed surfaces," Physical Review Letters, Vol. 108, 223905, 2012.
doi:10.1103/PhysRevLett.108.223905

34. Shen, X. and T. Cui, "Ultrathin plasmonic metamaterial for spoof localized surface plasmons," Laser Photonics Rev., Vol. 8, No. 1, 127-145, 2014.
doi:10.1002/lpor.201300144

35. Gao, Z., F. Gao, Y. Zhang, H. Xu, Y. Luo, and B. Zhang, "Forward/backward switching of plasmonic wave propagation using sign-reversal coupling," Adv. Mater., Vol. 29, 1700018, 2017.
doi:10.1002/adma.201700018

36. Gao, Z., L. Wu, F. Gao, Y. Luo, and B. Zhang, "Spoof plasmonics: From metamaterial concept to topological description," Adv. Mater., Vol. 30, 1706683, 2018.
doi:10.1002/adma.201706683

37. Yan, Q., E. Cao, Q. Sun, Y. Ao, X. Hu, X. Shi, Q. Gong, and H. Misawa, "Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains," Nano Lett., Vol. 21, 9270-9278, 2021.
doi:10.1021/acs.nanolett.1c03324

38. Garcia-Vidal, F. J., A. I. Femandez-Dominguez, L. Martin-Moreno, H. C. Zhang, W. Tang, R. Peng, and T. J. Cui, "Spoof surface plasmon photonics," Rev. Mod. Phys., Vol. 94, 025004, 2022.
doi:10.1103/RevModPhys.94.025004

39. Yang, Y., X. Xie, Y. Li, et al. "Radiative anti-parity-time plasmonics," Nature Communications, Vol. 13, 7678, 2022.
doi:10.1038/s41467-022-35447-3

40. Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Optics Letters, Vol. 24, No. 11, 711-713, 1999.
doi:10.1364/OL.24.000711

41. Li, Y., S. Xu, Z. Zhang, et al. "Polarization-orthogonal nondegenerate plasmonic higher-order topological states," Physical Review Letters, Vol. 130, 213603, 2023.
doi:10.1103/PhysRevLett.130.213603

42. Perez-Gonzalez, B., M. Bello, A. Gomez-Leon, and G. Platero, "Interplay between long-range hopping and disorder in topological systems," Physical Review B, 035146, 2019.
doi:10.1103/PhysRevB.99.035146

43. Li, C. and A. E. Miroshnichenko, "Extended SSH model: Non-local couplings and non-monotonous edge states," Physics, Vol. 1, 2-16, 2019.

44. Chen, L., N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, "Defect-induced Fano resonances in corrugated plasmonic metamaterials," Adv. Optical Mater., Vol. 5, 1600960, 2017.
doi:10.1002/adom.201600960

45. Gu, X., G.-D. Liu, L.-L. Wang, and Q. Lin, "Robus Fano resonance induced by topologically protected interface modes interference at gigahertz," Appl. Phys. Express, Vol. 15, 082004, 2022.
doi:10.35848/1882-0786/ac8334

46. Yang, Y. and Y. Pan, "Engineering zero mode, Fano resonance, and Tamm surface states in the waveguide-array realization of the modifiedd Su-Schrieffer-Heeger model," Optics Express, Vol. 27, No. 23, 32900-32911, 2019.
doi:10.1364/OE.27.032900

47. Song, F., S. Yao, and Z. Wang, "Non-Hermitian topological invariants in real space," Physical Review Letters, Vol. 123, 246801, 2019.
doi:10.1103/PhysRevLett.123.246801

48. Wu, X., L. Wang, S. Chen, X. Chen, and L. Yuan, "Transition characteristics of Non-Hermitian Skin Effects in a Zigzag lattice without chiral symmetry," Adv. Physics Res., 2300007, 2023.
doi:10.1002/apxr.202300007

49. Zhou, W.-H. and C.-X. Zhang, "Nonreciprocal Su-Schrieffer-Heeger lattice in the presence of next-nearest-neighboring coupling," Phys. Scr., Vol. 98, No. 5, 055202, 2023.
doi:10.1088/1402-4896/acc4f1