1. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.
doi:10.1007/0-387-37825-1
2. Giannini, V., A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, "Plasmonic nanoantennas: Fundamental and their use in controlling the radiative properties of nanoemmitters," Chem. Rev., Vol. 111, 3888-3912, 2011.
doi:10.1021/cr1002672
3. Lu, L., J. D. Joannopoulos, and M. Spljacic, "Topological photonics," Nature Photonics, Vol. 8, 821-829, 2014.
doi:10.1038/nphoton.2014.248
4. Ozawa, T., H. M. Price, A. Amo, et al. "Topological photonics," Rev. Mod. Phys., Vol. 91, 015006, 2019.
doi:10.1103/RevModPhys.91.015006
5. Shastri, K., M. I. Abdelrahman, and F. Monticone, "Nonreciprocal and topological plasmonics," Photonics, Vol. 8, 133, 2021.
doi:10.3390/photonics8040133
6. Zhuang, W., X. Chen, and F. Ye, "Plasmonic topological insulators for topological nanophotonics," Optics Letters, Vol. 42, No. 20, 4063-4066, 2017.
doi:10.1364/OL.42.004063
7. Leykam, D. and L. Yuan, "Topological phases in ring resonators: Recent progress and future prospects," Nanophotonics, Vol. 9, No. 15, 4473-4487, 2020.
doi:10.1515/nanoph-2020-0415
8. Su, W. P., J. R. Schrieffer, and A. J. Heeger, "Solitons in Polyacetylene,", Vol. 45, No. 25, 1979.
9. Malkova, N., I. Hromada, X. Wang, G. Bryant, and Z. Chen, "Observation of optical Shockley-like surface states in photonic superlattices," Optics Letters, Vol. 34, No. 11, 1633-1635, 2009.
doi:10.1364/OL.34.001633
10. Xiao, M., Z. Q. Zhang, and C. T. Chan, "Surface impedance and bulk band geometric phases in one-dimensional system," Physical Review X, Vol. 4, 021017, 2014.
doi:10.1103/PhysRevX.4.021017
11. Miert, G. V. and C. Ortix, "Excess charges as a probe of one-dimensional topological crystalline insulating phases," Physical Review B, Vol. 96, 235130, 2017.
doi:10.1103/PhysRevB.96.235130
12. Chen, T., Y. Yu, Y. Song, D. Yu, H. Ye, J. Xie, X. Shen, Y. Pan, and Q. Cheng, "Distinguishing the topological zero mode and Tamm mode in a microwave waveguide array," Ann. Phys. (Berlin), Vol. 531, 1900347, 2019.
doi:10.1002/andp.201900347
13. Li, G., L. Wang, R. Ye, Y. Zheng, D.-W. Wang, X.-J. Liu, A. Dutt, L. Yuan, and X. Chen, "Direct extraction of topological Zak phase with the synthetic dimension," Light: Science & Applications, Vol. 12, No. 1, 81, 2023.
doi:10.1038/s41377-023-01126-1
14. Pocock, S. R., X. Xiao, P. A. Huidobro, and V. Giannini, "Topological plasmonic chain with retardation and radiative effects," ACS Photonics, Vol. 5, 2271-2279, 2018.
doi:10.1021/acsphotonics.8b00117
15. Compaijen, P. J., V. A. Malyshev, and J. Knoester, "Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions," Physical Review B, Vol. 9, 085428, 2018.
doi:10.1103/PhysRevB.97.085428
16. Wu, R. P. H. and H. C. Ong, "Small mode volume topological photonic states in one-dimensional lattices with dipole-quadrupole interactions," Physical Review Research, Vol. 4, 023233, 2022.
doi:10.1103/PhysRevResearch.4.023233
17. Zhang, M.-X., Z. Zhou, L. Yan, L. Zhang, and J.-Y. Yan, "Polarization-induced topological phase transition in zigzag chains composed of metal nanoparticles," J. Appl. Phys., Vol. 129, 243103, 2021.
doi:10.1063/5.0054141
18. Moritake, Y., M. Ono, and M. Notomi, "Far-field optical imaging of topological edge states in zigzag plasmonic chains," Nanophotonics, Vol. 11, No. 9, 2183-2189, 2022.
doi:10.1515/nanoph-2021-0648
19. Zheng, J., Z. Guo, Y. Sun, H. Jiang, Y. Li, and H. Chen, "Topological edge modes in one-dimensional photonic artificial structures," Progress In Electromagnetics Research, Vol. 178, 1-20, 2023.
doi:10.2528/PIER22101202
20. Sinev, I. S., I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, "Mapping plasmonic topological states at the nanoscale," Nanoscale, Vol. 7, 11904, 2015.
doi:10.1039/C5NR00231A
21. Hu, P., L. Chen, A. P. Shkurinov, Y. Zhu, and S. Zhuang, "Observation of topological transmission in terahertz domino waveguide array," IEEE Transaction of Terahertz Science and Technology, Vol. 13, No. 4, 337-346, 2023.
doi:10.1109/TTHZ.2023.3275270
22. Poddubny, A., A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, "Topological Majorana states in zigzag chains of plasmonic nanoparticles," ACS Photonics, Vol. 1, 101-105, 2014.
doi:10.1021/ph4000949
23. Downing, C. A. and G. Weick, "Topological collective plasmons in bipartite chains of metallic nanoparticles," Physical Review B, Vol. 95, 125426, 2017.
doi:10.1103/PhysRevB.95.125426
24. Bleckmann, F., Z. Cherpakova, S. Linden, and A. Alberti, "Spectral imaging of topological edge states in plasmonic waveguide arrays," Physical Review B, Vol. 96, 045417, 2017.
doi:10.1103/PhysRevB.96.045417
25. Ling, C. W., M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, "Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles," Optics Ecpress, Vol. 23, No. 3, 2021-2031, 2015.
doi:10.1364/OE.23.002021
26. Giannini, V., G. Vecchi, and J. G. Rivas, "Lighting up multipolar surface plasmon polaritons by collective resonances in array of nanoantennas," Physical Review Letters, Vol. 105, 266801, 2010.
doi:10.1103/PhysRevLett.105.266801
27. Solnyshkov, D. D., A. V. Nalitov, and G. Malpuech, "Kibble-Zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars," Physical Review Letters, Vol. 116, 046402, 2016.
doi:10.1103/PhysRevLett.116.046402
28. Chen, Z.-Y., L.-S. Yan, Y. Pan, L. Jiang, A.-L. Yi, W. Pan, and B. Luo, "Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission," Light: Science & Applications, Vol. 6, e16207, 2017.
29. Zhou, W., M. Dridi, J. Y. Suh, C. H. Kin, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, "Lasing action in strongly coupled plasmonic nanocavity arrays," Nature Nanotechnology, Vol. 8, 506-511, 2013.
doi:10.1038/nnano.2013.99
30. Wang, H., J.-W. Pan, et al. "Towards optimal single-photon sources from polarized microcavities," Nature Photonics, Vol. 13, 770-775, 2019.
doi:10.1038/s41566-019-0494-3
31. Wellbrock, G. and T. J. Xia, "The road to 100G deployment," IEEE Communications Magazine, Vol. 48, S14, 2010.
doi:10.1109/MCOM.2010.5434373
32. Garcia-Vidal, F. J., L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A: Pure Appl. Opt., Vol. 7, S97, 2005.
doi:10.1088/1464-4258/7/2/013
33. Pros, A., E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, "Localized spoof plasmons arise while texturing closed surfaces," Physical Review Letters, Vol. 108, 223905, 2012.
doi:10.1103/PhysRevLett.108.223905
34. Shen, X. and T. Cui, "Ultrathin plasmonic metamaterial for spoof localized surface plasmons," Laser Photonics Rev., Vol. 8, No. 1, 127-145, 2014.
doi:10.1002/lpor.201300144
35. Gao, Z., F. Gao, Y. Zhang, H. Xu, Y. Luo, and B. Zhang, "Forward/backward switching of plasmonic wave propagation using sign-reversal coupling," Adv. Mater., Vol. 29, 1700018, 2017.
doi:10.1002/adma.201700018
36. Gao, Z., L. Wu, F. Gao, Y. Luo, and B. Zhang, "Spoof plasmonics: From metamaterial concept to topological description," Adv. Mater., Vol. 30, 1706683, 2018.
doi:10.1002/adma.201706683
37. Yan, Q., E. Cao, Q. Sun, Y. Ao, X. Hu, X. Shi, Q. Gong, and H. Misawa, "Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains," Nano Lett., Vol. 21, 9270-9278, 2021.
doi:10.1021/acs.nanolett.1c03324
38. Garcia-Vidal, F. J., A. I. Femandez-Dominguez, L. Martin-Moreno, H. C. Zhang, W. Tang, R. Peng, and T. J. Cui, "Spoof surface plasmon photonics," Rev. Mod. Phys., Vol. 94, 025004, 2022.
doi:10.1103/RevModPhys.94.025004
39. Yang, Y., X. Xie, Y. Li, et al. "Radiative anti-parity-time plasmonics," Nature Communications, Vol. 13, 7678, 2022.
doi:10.1038/s41467-022-35447-3
40. Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Optics Letters, Vol. 24, No. 11, 711-713, 1999.
doi:10.1364/OL.24.000711
41. Li, Y., S. Xu, Z. Zhang, et al. "Polarization-orthogonal nondegenerate plasmonic higher-order topological states," Physical Review Letters, Vol. 130, 213603, 2023.
doi:10.1103/PhysRevLett.130.213603
42. Perez-Gonzalez, B., M. Bello, A. Gomez-Leon, and G. Platero, "Interplay between long-range hopping and disorder in topological systems," Physical Review B, 035146, 2019.
doi:10.1103/PhysRevB.99.035146
43. Li, C. and A. E. Miroshnichenko, "Extended SSH model: Non-local couplings and non-monotonous edge states," Physics, Vol. 1, 2-16, 2019.
44. Chen, L., N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, "Defect-induced Fano resonances in corrugated plasmonic metamaterials," Adv. Optical Mater., Vol. 5, 1600960, 2017.
doi:10.1002/adom.201600960
45. Gu, X., G.-D. Liu, L.-L. Wang, and Q. Lin, "Robus Fano resonance induced by topologically protected interface modes interference at gigahertz," Appl. Phys. Express, Vol. 15, 082004, 2022.
doi:10.35848/1882-0786/ac8334
46. Yang, Y. and Y. Pan, "Engineering zero mode, Fano resonance, and Tamm surface states in the waveguide-array realization of the modifiedd Su-Schrieffer-Heeger model," Optics Express, Vol. 27, No. 23, 32900-32911, 2019.
doi:10.1364/OE.27.032900
47. Song, F., S. Yao, and Z. Wang, "Non-Hermitian topological invariants in real space," Physical Review Letters, Vol. 123, 246801, 2019.
doi:10.1103/PhysRevLett.123.246801
48. Wu, X., L. Wang, S. Chen, X. Chen, and L. Yuan, "Transition characteristics of Non-Hermitian Skin Effects in a Zigzag lattice without chiral symmetry," Adv. Physics Res., 2300007, 2023.
doi:10.1002/apxr.202300007
49. Zhou, W.-H. and C.-X. Zhang, "Nonreciprocal Su-Schrieffer-Heeger lattice in the presence of next-nearest-neighboring coupling," Phys. Scr., Vol. 98, No. 5, 055202, 2023.
doi:10.1088/1402-4896/acc4f1