Vol. 123
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-12-28
Wearable Antenna with Reduced SAR Using Novel FSS Reflector for IoT Assisted Wireless Healthcare Applications
By
Progress In Electromagnetics Research M, Vol. 123, 1-11, 2024
Abstract
In this research work, a flexible polymer-based compact wearable antenna has been designed, fabricated, and analysed for Wireless Body Area Network (WBAN) IoT enabled applications. The antenna is fabricated on a Polyethylene Terephthalate (PET) with λL as the lowest operating free-space wavelength resonating for sub-6-GHz band at 2.4 GHz, 3.3 GHz, 4.1 GHz and 5.8 GHz. Periodic Frequency Selective Surface (FSS) reflector is used which reduces Electromagnetic Interference (EMI) antenna and enhances the gain of the antenna. The simulation results prove that this flexible wearable antenna radiates an increased gain of approximately 10 dB and returns loss of -36 dB at lowest frequency with FSS as a reflector. The simulation results are validated by experimental results which offer a good agreement. An average SAR value of l.5 watts/gm is measured within the specific safety limit which makes it feasible for practical implementation. This antenna provides better isolation against on-body losses and reduces SAR value with improved radiation efficiency for WBAN IoT enabled applications.
Citation
Shivani Sharma, and Malay Ranjan Tripathy, "Wearable Antenna with Reduced SAR Using Novel FSS Reflector for IoT Assisted Wireless Healthcare Applications," Progress In Electromagnetics Research M, Vol. 123, 1-11, 2024.
doi:10.2528/PIERM23080803
References

1. Ademaj, Fjolla, Mateusz Rzymowski, Hans-Peter Bernhard, Krzysztof Nyka, and Lukasz Kulas, "Relay-aided wireless sensor network discovery algorithm for dense industrial IoT utilizing ESPAR antennas," IEEE Internet of Things Journal, Vol. 8, No. 22, 16653-16665, Nov. 15 2021.
doi:10.1109/JIOT.2021.3075346

2. Ashyap, Adel Y. I., Samsul Haimi Bin Dahlan, Zuhairiah Zainal Abidin, Muhammad Inam Abbasi, Muhammad Ramlee Kamarudin, Huda A. Majid, Muhammad Hashim Dahri, Mohd Haizal Jamaluddin, and Akram Alomainy, "An overview of electromagnetic band-gap integrated wearable antennas," IEEE Access, Vol. 8, 7641-7658, 2020.
doi:10.1109/ACCESS.2020.2963997

3. Paracha, Kashif Nisar, Sharul Kamal Abdul Rahim, Ping Jack Soh, and Mohsen Khalily, "Wearable antennas: A review of materials, structures, and innovative features for autonomous communication and sensing," IEEE Access, Vol. 7, 56694-56712, 2019.
doi:10.1109/ACCESS.2019.2909146

4. Zhao, Bo, Jingna Mao, Jian Zhao, Huazhong Yang, and Yong Lian, "The role and challenges of body channel communication in wearable flexible electronics," IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 2, 283-296, Apr. 2020.
doi:10.1109/TBCAS.2020.2966285

5. Wong, Hang, Wei Lin, Laure Huitema, and Eric Arnaud, "Multi-polarization reconfigurable antenna for wireless biomedical system," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 3, 652-660, Jun. 2017.
doi:10.1109/TBCAS.2016.2636872

6. Belrhiti, L., F. Riouch, A. Tribak, J. Terhzaz, and A. M. Sanchez, "Flexible antennas design and test for human body applications scenarios," Microwaves, Optoelectron. Electromagn. Appl., Vol. 16, No. 2, 494513, 2017.

7. Kim, Jayoung, Alan S. Campbell, Berta Esteban-Fernandez de Avila, and Joseph Wang, "Wearable biosensors for healthcare monitoring," Nature Biotechnology, Vol. 37, No. 4, 389-406, Apr. 2019.
doi:10.1038/s41587-019-0045-y

8. Dey, Shuvashis, Md Shamsul Arefin, and Nemai Chandra Karmakar, "Design and experimental analysis of a novel compact and flexible super wide band antenna for 5G," IEEE Access, Vol. 9, 46698-46708, 2021.
doi:10.1109/ACCESS.2021.3068082

9. Federal Communications Commission "FCC report and order for part 15 acceptance of ultra wideband (UWB) systems from 3.1-10.6 GHz," FCC, Washington, Dc, 1-10, 2002.

10. Saeed, Saud M., Constantine A. Balanis, Craig R. Birtcher, Ahmet C. Durgun, and Hussein N. Shaman, "Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2396-2399, 2017.
doi:10.1109/LAWP.2017.2720558

11. Wong, Hang, Wei Lin, Laure Huitema, and Eric Arnaud, "Multi-polarization reconfigurable antenna for wireless biomedical system," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 3, 652-660, Jun. 2017.
doi:10.1109/TBCAS.2016.2636872

12. Yan, Sen, Ping Jack Soh, and Guy A. E. Vandenbosch, "Dual-band textile MIMO antenna based on substrate-integrated waveguide (SIW) technology," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4640-4647, Nov. 2015.
doi:10.1109/TAP.2015.2477094

13. Ciccia, Simone, Giorgio Giordanengo, and Giuseppe Vecchi, "Energy efficiency in IOT networks: integration of reconfigurable antennas in ultra low-power radio platforms based on system-on-chip," IEEE Internet of Things Journal, Vol. 6, No. 4, 6800-6810, Aug. 2019.
doi:10.1109/JIOT.2019.2911557

14. Vamseekrishna, Allam, Boddapati Taraka Phani Madhav, Tirunagari Anilkumar, and Lakkam Siva Shanker Reddy, "An IOT controlled octahedron frequency reconfigurable multiband antenna for microwave sensing applications," IEEE Sensors Letters, Vol. 3, No. 10, Oct. 2019.
doi:10.1109/LSENS.2019.2943772

15. Santamaria, Luca, Fabien Ferrero, Robert Staraj, and Leonardo Lizzi, "Electronically pattern reconfigurable antenna for IOT applications," IEEE Open Journal of Antennas and Propagation, Vol. 2, 546-554, 2021.
doi:10.1109/OJAP.2021.3073104

16. Santamaria, Luca, Fabien Ferrero, Robert Staraj, and Leonardo Lizzi, "Slot-based pattern reconfigurable ESPAR antenna for IOT applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 7, 3635-3644, Jul. 2021.
doi:10.1109/TAP.2020.3044399

17. Haydhah, Saeed A., Fabien Ferrero, Leonardo Lizzi, Mohammad S. Sharawi, and Azzedine Zerguine, "A multifunctional compact pattern reconfigurable antenna with four radiation patterns for sub-GHz IOT applications," IEEE Open Journal of Antennas and Propagation, Vol. 2, 613-622, 2021.
doi:10.1109/OJAP.2021.3078236

18. Hall, Peter S. and Yang Hao, "Antennas and propagation for body-centric wireless communications," Microwave Journal, Vol. 55, No. 5, 276, 2012.

19. Soh, Ping Jack, Guy A. E. Vandenbosch, Soo Liam Ooi, and Nurul Husna Mohd Rais, "Design of a broadband all-textile slotted PIFA," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 379-384, Jan. 2012.
doi:10.1109/TAP.2011.2167950

20. Ullah, Md. Amanath, Mohammad Tariqul Islam, Touhidul Alam, and Farhad Bin Ashraf, "Paper-based flexible antenna for wearable telemedicine applications at 2.4 GHz ISM band," Sensors, Vol. 18, No. 12, Dec. 2018.
doi:10.3390/s18124214

21. Sharma, Shivani, Malay R. Tripathy, and Ajay K. Sharma, "Low SAR dual-band circularly polarized wearable RFID antenna using FSS reector with reduced EMI," Progress In Electromagnetics Research C, Vol. 129, 2023.

22. Sharma, Shivani, Malay Ranjan Tripathy, and Ajay Kumar Sharma, "Dual-band circularly polarized wearable patch antenna for RFID reader," 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA), 195-198, 2021.

23. Zhang, Jiahao, Sen Yan, Xiaomu Hu, and Guy A. E. Vandenbosch, "Dual-band dual-polarized wearable button array with miniaturized radiator," IEEE Transactions on Biomedical Circuits and Systems, Vol. 13, No. 6, 1583-1592, Dec. 2019.
doi:10.1109/TBCAS.2019.2953989

24. Arif, Ali, Muhammad Zubair, Mubasher Ali, Muhammad Umar Khan, and Muhammad Qasim Mehmood, "A compact, low-profile fractal antenna for wearable on-body WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 981-985, May 2019.
doi:10.1109/LAWP.2019.2906829

25. Ashyap, I., Samsul Haimi Dahlan, Zuhairiah Zainal Abidin, Huda A. Majid, Fauziahanim Che Seman, Xavier Ngu, and Noran Azizan Cholan, "Flexible antenna with his based on PDMS substrate for WBAN applications," 2018 IEEE International RF and Microwave Conference (RFM 2018), 69-72, Penang, Malaysia, Dec. 17-19 2018.

26. Alqadami, Abdulrahman S. M., Konstanty S. Bialkowski, Ahmed Toaha Mobashsher, and Amin M. Abbosh, "Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis," IEEE Transactions on Biomedical Circuits and Systems, Vol. 13, No. 1, 124-134, Feb. 2019.
doi:10.1109/TBCAS.2018.2878057

27. Alqadami, Abdulrahman S. M., Konstanty S. Bialkowski, Ahmed Toaha Mobashsher, and Amin M. Abbosh, "Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis," IEEE Transactions on Biomedical Circuits and Systems, Vol. 13, No. 1, 124-134, Feb. 2019.
doi:10.1109/TBCAS.2018.2878057

28. El Atrash, Mohamed, Mahmoud A. Abdalla, and Hadia M. Elhennawy, "A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6378-6388, 2019.

29. Can, Sultan and A. Egemen Yilmaz, "Reduction of specific absorption rate with artificial magnetic conductors," International Journal of RF and Microwave Computer-aided Engineering, Vol. 26, No. 4, 349-354, May 2016.
doi:10.1002/mmce.20974

30. Hussain, Rifaqat, "Shared-aperture slot-based sub-6-GHz and mm-wave IOT antenna for 5G applications," IEEE Internet of Things Journal, Vol. 8, No. 13, 10807-10814, Jul. 1 2021.
doi:10.1109/JIOT.2021.3050383

31. Huang, Yuwen, Mengyu Liu, and Yuan Liu, "Energy-efficient SWIPT in IOT distributed antenna systems," IEEE Internet of Things Journal, Vol. 5, No. 4, 2646-2656, Aug. 2018.
doi:10.1109/JIOT.2018.2796124

32. Sharma, Shivani, Malay Ranjan Tripathy, and Ajay Kumar Sharma, "Low profile and low SAR flexible wearable patch antenna for WBAN," 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), 1119-1124, 2021.

33. Le, Tu Tuan and Tae-Yeoul Yun, "Miniaturization of a dual-band wearable antenna for WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 8, 1452-1456, Aug. 2020.
doi:10.1109/LAWP.2020.3005658

34. Zhang, Kai, Guy A. E. Vandenbosch, and Sen Yan, "A novel design approach for compact wearable antennas based on metasurfaces," IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 4, 918-927, Aug. 2020.
doi:10.1109/TBCAS.2020.3010259

35. Gao, Guo-Ping, Bin Hu, Shao-Fei Wang, and Chen Yang, "Wearable circular ring slot antenna with EBG structure for wireless body area network," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 434-437, Mar. 2018.
doi:10.1109/LAWP.2018.2794061

36. Seman, Fauziahanim C., Faisal Ramadhan, Nurul S. Ishak, Rudy Yuwono, Zuhairiah Z. Abidin, S. Haimi Dahlan, Shaharil M. Shah, and I Ashyap, "Performance evaluation of a star-shaped patch antenna on polyimide film under various bending conditions for wearable applications," Progress In Electromagnetics Research Letters, Vol. 85, 125-130, 2019.
doi:10.2528/PIERL19022102

37. Zhang, Xiu Yin, Hang Wong, Te Mo, and Yun Fei Cao, "Dual-band dual-mode button antenna for on-body and off-body communications," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 4, 933-941, Aug. 2017.
doi:10.1109/TBCAS.2017.2679048

38. Davoli, Luca, Laura Belli, Antonio Cilfone, and Gianluigi Ferrari, "From micro to macro IOT: challenges and solutions in the integration of IEEE 802.15.4/802.11 and sub-GHz technologies," IEEE Internet of Things Journal, Vol. 5, No. 2, SI, 784-793, Apr. 2018.
doi:10.1109/JIOT.2017.2747900

39. Cai, Zhanghua, Yantao Zhou, Yihong Qi, Weihua Zhuang, and Lei Deng, "A millimeter wave dual-lens antenna for IOT-based smart parking radar system," IEEE Internet of Things Journal, Vol. 8, No. 1, 418-427, Jan. 1 2021.
doi:10.1109/JIOT.2020.3004403

40. Gao, Guo-Ping, Chen Yang, Bin Hu, Rui-Feng Zhang, and Shao-Fei Wang, "A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 2, 288-292, Feb. 2019.
doi:10.1109/LAWP.2018.2889117

41. Sharma, Shivani, Malay Ranjan Tripathy, and Ajay Kumar Sharma, "High gain FSS integrated slotted UHF RFID antenna for WBAN," International Journal of System Assurance Engineering and Management, Vol. 14, No. SUPPL 2, 2, SI, 610-621, May 2023.
doi:10.1007/s13198-021-01352-z

42. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

43. Munk, Ben A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005.

44. Ahmed, Ghufran, Saif Ul Islam, Maham Shahid, Adnan Akhunzada, Sohail Jabbar, Muhammad Khurram Khan, Muhammad Riaz, and Kijun Han, "Rigorous analysis and evaluation of specific absorption rate (SAR) for mobile multimedia healthcare," IEEE Access, Vol. 6, 29602-29610, 2018.
doi:10.1109/ACCESS.2018.2839909

45. Ansarizadeh, Mohammadali, Ayaz Ghorbani, and Raed A. Abd-Alhameed, "An approach to equivalent circuit modeling of rectangular microstrip antennas," Progress In Electromagnetics Research B, Vol. 8, 77-86, 2008.

46. Kundu, Surajit, "A compact uniplanar ultra-wideband frequency selective surface for antenna gain improvement and ground penetrating radar application," International Journal of RF and Microwave Computer-aided Engineering, Vol. 30, No. 10, e22363, 2020.