Vol. 119
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-08
Mutual Coupling Reduction in UWB-MIMO Antenna Using Circular Slot EBG Structure
By
Progress In Electromagnetics Research M, Vol. 119, 177-188, 2023
Abstract
In this paper, a compact Ultra Wide Band (UWB) Multiple Input Multiple Output (MIMO) antenna using circular slots Electromagnetic Band Gap (EBG) structures operating in frequency band from 3.1 GHz to 10.6 GHz is presented. The size of this compact antenna is 26 × 33 mm2. In wireless communications, such as WLAN, 4G, and 5G, MIMO has become an essential element. However, the major limiting factor of MIMO systems is mutual coupling due to the smaller spacing between multiple antennas, which reduces spatial diversity, antenna gain and can also result in unwanted interference and cross-talk between antenna elements. To enhance antenna performance and reduce the mutual coupling, EBG structures are used. Incorporation of EBG structures in MIMO antenna eliminates surface wave propagation, which reduces the mutual coupling. In this work, the design of a dot notch shaped UWB-MIMO antenna with a circular slot EBG structure is proposed. Results presented here are simulated by using CST microwave software studio. From the results it can be observed that the proposed antenna has bandwidth of 3.1 GHz-10.6 GHz. It exhibits 6.72 dB peak gain and reduces the mutual coupling considerably, i.e., more than -28 dB.
Citation
Raveendrababu Pakala, and Dasari Ramakrishna, "Mutual Coupling Reduction in UWB-MIMO Antenna Using Circular Slot EBG Structure," Progress In Electromagnetics Research M, Vol. 119, 177-188, 2023.
doi:10.2528/PIERM23080504
References

1. Segovia-Vargas, D., F. J. Herraiz-Martinez, E. Ugarte-Munooz, L. E. Garcia-Munoz, and V. Gonzalez-Posadas, "Quad-frequency linearly-polarized and dual-frequency circularly-polarized microstrip patch antennas with CRLH loading," Progress In Electromagnetics Research, Vol. 133, 91-115, 2013.
doi:10.2528/PIER12072413

2. Ul Haq, M. A. and S. Koziel, "Ground plane alterations for design of high-isolation compact wideband MIMO antenna," IEEE Access, Vol. 6, 48978-48983, 2018.
doi:10.1109/ACCESS.2018.2867836

3. Alsultan, R. G. S. and G. O. Yetkin, "Mutual coupling reduction of E-shaped MIMO antenna with matrix of C-shaped resonators," International Journal of Antennas and Propagation, Vol. 2018, 1-13, 2018.
doi:10.1155/2018/4814176

4. Mohanna, S., A. Farahbakhsh, and S. Tavakoli, "Mutual coupling reduction in two-dimensional array of microstrip antennas using concave rectangular patches," Journal of Telecommunications, Vol. 2, No. 2, 64-69, 2010.

5. Wu, G.-C., G.-M. Wang, J.-G. Liang, X.-J. Gao, and L. Zhu, "Novel ultracompact two-dimensional waveguide-based metasurface for electromagnetic coupling reduction 12 Raveendrababu and Pakala of microstrip antenna array," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, No. 9, 789-794, 2015.
doi:10.1002/mmce.20917

6. Iqbal, A., O. A. Saraereh, A. W. Ahmad, and S. Bashir, "Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna," IEEE Access, Vol. 6, 2755-2759, 2017.

7. Ahmed, M. I., A. Sebak, E. A. Abdallah, and H. Elhennawy, "Mutual coupling reduction using defected ground structure (DGS) for array applications," 2012 15 International Symposium on Antenna Technology and Applied Electromagnetics, 1-5, IEEE, 2012.

8. Nandigama, S. V., K. Bharath, and R. K. Dasari, "A MIMO PIFA loaded with CSRR- SRR quadruplets for WLAN, ISM Band, and S-/C-band wireless applications," Progress In Electromagnetics Research B, Vol. 101, 137-154, 2023.
doi:10.2528/PIERB23050508

9. Prabhu, P. and S. Malarvizhi, "Novel double-side EBG based mutual coupling reduction for compact quad port UWB MIMO antenna," AEU --- International Journal of Electronics and Communications, Vol. 109, 146-156, 2019.
doi:10.1016/j.aeue.2019.06.010

10. Tang, Z., X. Wu, J. Zhan, S. Hu, Z. Xi, and Y. Liu, "Compact UWB-MIMO antenna with high isolation and triple band-notched characteristics," IEEE Access, Vol. 7, 19856-19865, 2019.
doi:10.1109/ACCESS.2019.2897170

11. Alsayaghi, A., T. Sabapathy, M. Jusoh, K. Hossain, R. B. Ahmad, M. N. Osman, S. Jayaprakasam, H. A. Rahim, and N. S. Raghava, "Investigation on the mutual coupling reduction in MIMO antenna using dual split CSRR EBG," Journal of Physics: Conference Series, Vol. 1962, 012012, IOP Publishing, 2021.

12. Abushamleh, S., H. Al-Rizzo, A. Abbosh, and A. A. Kishk, "Mutual coupling reduction between two patch antennas using a new miniaturized soft surface structure," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1822-1823, IEEE, 2013.
doi:10.1109/APS.2013.6711570

13. Park, J.-D., M. Rahman, and H. N. Chen, "Isolation enhancement of wide-band MIMO array antennas utilizing resistive loading," IEEE Access, Vol. 7, 81020-81026, 2019.
doi:10.1109/ACCESS.2019.2923330

14. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

15. Khattak, M. I., M. I. Khan, M. Anab, A. Ullah, M. Al-Hasan, and J. Nebhen, "Miniaturized CPW-fed UWB-MIMO antennas with decoupling stub and enhanced isolation," International Journal of Microwave and Wireless Technologies, Vol. 14, No. 4, 456-464, 2022.
doi:10.1017/S1759078721000556

16. Fadehan, G. A., Y. O. Olasoji, and K. B. Adedeji, "Mutual coupling effect and reduction method with modified electromagnetic band gap in UWB MIMO antenna," Applied Sciences, Vol. 12, No. 23, 12358, 2022.
doi:10.3390/app122312358

17. Gollamudi, N. K., Y. V. Narayana, and A. M. Prasad, "Compact and asymmetric fed modified hexagonal shaped multiple-input multiple-output (MIMO) antenna for 5G sub: 6 GHz (n77/n78 & n79) and WLAN applications," Analog Integrated Circuits and Signal Processing, Vol. 114, No. 1, 103-112, 2023.
doi:10.1007/s10470-022-02124-w

18. Wang, Z., W. Mu, M. Yang, and C. Li, "Design of compact multiband MIMO antenna based on ground neutralization line decoupling," The Applied Computational Electromagnetics Society Journal (ACES), 702-715, 2022.

19. Aghoutane, B., S. Das, M. EL Ghzaoui, B. T. P. Madhav, and H. El Faylali, "A novel dual band high gain 4-port millimeter wave MIMO antenna array for 28/37 GHz 5G applications," AEU --- International Journal of Electronics and Communications, Vol. 145, 154071, 2022.
doi:10.1016/j.aeue.2021.154071

20. Khalid, M., S. I. Naqvi, N. Hussain, M. Ur Rahman, Fawad, S. S. Mirjavadi, M. J. Khan, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071

21. Hussain, M., W. A. Awan, E. M. Ali, M. S. Alzaidi, M. Alsharef, D. H. Elkamchouchi, A. Alzahrani, and M. F. A. Sree, "Isolation improvement of parasitic element-loaded dual-band MIMO antenna for mm-Wave applications," Micromachines, Vol. 13, No. 11, 1918, 2022.
doi:10.3390/mi13111918

22. Sghaier, N., A. Belkadi, I. B. Hassine, L. Latrach, and A. Gharsallah, "Millimeter-wave dual-band MIMO antennas for 5G wireless applications," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 44, No. 3-4, 297-312, 2023.
doi:10.1007/s10762-023-00914-5

23. Roshani, S. and H. Shahveisi, "Mutual coupling reduction in microstrip patch antenna arrays using simple microstrip resonator," Wireless Personal Communications, Vol. 126, No. 2, 1665-1677, 2022.
doi:10.1007/s11277-022-09815-7

24. Rajkumar, S., A. A. Amala, and K. T. Selvan, "Isolation improvement of UWB MIMO antenna utilising molecule fractal structure," Electronics Letters, Vol. 55, No. 10, 576-579, 2019.
doi:10.1049/el.2019.0592

25. Valavan, S. E., D. Tran, and A. G. Yarovoy, "Novel dual-band phased array antenna with low mutual coupling characteristics," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 1997-2000, 2014.
doi:10.1109/EuCAP.2014.6902197

26. Li, Z., C. Yin, and X. Zhu, "Compact UWB MIMO vivaldi antenna with dual band-notched characteristics," IEEE Access, Vol. 7, 38696-38701, 2019.
doi:10.1109/ACCESS.2019.2906338

27. Singh, H. V. and S. Tripathi, "Compact UWB MIMO antenna with cross-shaped unconnected ground stub using characteristic mode analysis," Microwave and Optical Technology Letters, Vol. 61, No. 7, 1874-1881, 2019.
doi:10.1002/mop.31792

28. Amin, F., R. Saleem, T. Shabbir, S. Ur Rehman, M. Bilal, and M. F. Shafique, "A compact quad-element UWB-MIMO antenna system with parasitic decoupling mechanism," Applied Sciences, Vol. 9, No. 11, 2371, 2019.
doi:10.3390/app9112371

29. Khan, A., S. Bashir, S. Ghafoor, and K. K. Qureshi, "Mutual coupling reduction using ground stub and EBG in a compact wideband MIMO-antenna," IEEE Access, Vol. 9, 40972-40979, 2021.
doi:10.1109/ACCESS.2021.3065441

30. Mchbal, A., N. Amar Touhami, H. Elftouh, and A. Dkiouak, "Mutual coupling reduction using a protruded ground branch structure in a compact UWB OWL-shaped MIMO antenna," International Journal of Antennas and Propagation, Vol. 2018, Article ID 4598527, 2018.

31. Patre, S. R. and S. P. Singh, "Shared radiator MIMO antenna for broadband applications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 7, 1153-1159, 2018.
doi:10.1049/iet-map.2017.0331