Vol. 119
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-09-12
Dual-Band 4-Port Vivaldi MIMO Antenna for 5G mmWave Applications at 28/39 GHz
By
Progress In Electromagnetics Research M, Vol. 119, 13-24, 2023
Abstract
A compact new dual band 4-port Vivaldi MIMO (Multiple-Input-Multiple-Output) antenna is designed for 5G mmWave applications. The proposed MIMO antenna resonates at two frequencies 28 GHz and 39 GHz, and it has dimensions 22x22x0.79 mm3. The Vivaldi structure etched on ground plane acts as a defected ground structure (DGS). The proposed antenna is fabricated on Rogers RT/duroid 5880 material having 0.79 mm thickness and 2.2 dielectric material. For high frequency and broad band applications RT/duroid material is suited to maintain low dielectric loss, and it works in high temperature places also. For the proposed four port Vivaldi MIMO antenna, the isolation between any two antenna elements is obtained below -21.59 dB. The bandwidths achieved for two bands are 4.64 GHz (26.31-30.95 GHz) at 28 GHz resonant frequency and 2.69 GHz (38.35-41.04 GHz) at 39 GHz resonant frequency for 4-port MIMO antenna. The gain achieved at 28 GHz is 5.65 dB and at 39 GHz is 5.53 dB. It is possible to achieve MIMO performance parameters such as ECC < 0.003, DG = 10, CCL < 0.4 (bits/s/Hz), TARC < -10 dB, and MEG ratio is 1.01. Simulated and measured results are compared, and the antenna is designed using ansys HFSS tool.
Citation
Golla Ramyasree, and Nelaturi Suman, "Dual-Band 4-Port Vivaldi MIMO Antenna for 5G mmWave Applications at 28/39 GHz ," Progress In Electromagnetics Research M, Vol. 119, 13-24, 2023.
doi:10.2528/PIERM23080401
References

1. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020.
doi:10.1109/ACCESS.2020.3020952

2. Ericson "Leveraging the potential of 5G millimeter wave,", https://www.ericsson.com/en/reports-and-papers/further-insights/leveraging-the-potential-of-5g-millimeter-wave.

3. Rappaport, T. S., S. Sun, R. Mayzus, et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

4. Gibson, P. J., "The Vivaldi aerial," 1979 9th European Microwave Conference, 101-105, 1979.
doi:10.1109/EUMA.1979.332681

5. Gjokaj, V., J. Papapolymerou, J. D. Albrecht, B. Wright, and P. Chahal, "A compact receive module in 3-D printed Vivaldi antenna," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 10, No. 2, 343-346, Feb. 2020.
doi:10.1109/TCPMT.2019.2961345

6. Shan, J., A. Xu, and J. Lin, "A parametric study of microstrip-fed Vivaldi antenna," 3rd IEEE International Conference on Computer and Communications (ICCC), 1099-1103, 2017.

7. Li, Z., C. Yin, and X. Zhu, "Compact UWB MIMO Vivaldi antenna with dual band-notched characteristics," IEEE Access, Vol. 7, 38696-38701, 2019.
doi:10.1109/ACCESS.2019.2906338

8. Li, Q. and Y. Sun, "A high isolation UWB MIMO antenna based on angle diversity," 2020 IEEE MTT-S International Wireless Symposium (IWS), 1-3, 2020.

9. Arezoomand, A., et al., "Photonic band gap implementation for phase centre controlling in Vivaldi antenna," IET Microwaves, Antennas & Propagation, Vol. 11, No. 13, 1880-1886, 2017.
doi:10.1049/iet-map.2017.0010

10. Hatami, A., A. S. Arezomand, and F. B. Zarrabi, "Phase center controlling in Vivaldi antenna: Review and development of the story," Journal of Computational Electronics, Vol. 19, 736-749, 2020.
doi:10.1007/s10825-020-01463-z

11. Poorgholam-Khanjari, S. and F. B. Zarrabi, "Reconfigurable Vivaldi THz antenna based on graphene load as hyperbolic metamaterial for skin cancer spectroscopy," Optics Communications, Vol. 480, 126482, 2021.
doi:10.1016/j.optcom.2020.126482

12. Elsheakh, D. M. and E. A. Abdallah, "Ultrawideband Vivaldi antenna for DVB-T, WLAN and WiMAX applications," International Journal of Antennas and Propagation, Vol. 2014, 2014.

13. Zhu, Y., D. Su, W. Xie, Z. Liu, and K. Zuo, "Design of a novel miniaturized Vivaldi antenna with loading resistance for Ultra Wideband (UWB) applications," ACES Journal, Vol. 32, No. 10, 895-900, Jul. 2021.

14. Paul, L. C. and Md. M. Islam, "A super wideband directional compact Vivaldi antenna for lower 5G satellite applications," International Journal of Antennas and Propagation, 2021.

15. Hasan, Md. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019.
doi:10.1080/09205071.2019.1617790

16. Marzouk, H. M., M. I. Ahmed, and A. H. A. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303

17. Ali, W., S. Das, H. Medkour, and S. Lakrit, "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications," Microsystem Technologies, Vol. 27, 283-292, 2021.
doi:10.1007/s00542-020-04951-1

18. Mallat, N. K., M. Nouri, S. A. Aghdam, M. T. Zia, B. Harb, and A. Jafarieh, "A dual circularly reconfigurable polarization patch antenna for fifth generation mobile communication systems," Progress In Electromagnetics Research C, Vol. 105, 73-84, 2020.
doi:10.2528/PIERC20053002

19. Farahat, A. E. and K. F. A. Hussein, "Dual-band (28/38 GHz) Yagi-Uda antenna with corrugated radiator and triangular reflectors for 5G mobile phones," The Applied Computational Electromagnetics Society Journal (ACES), 1325-1334, 2021.

20. El-Hassan, M. A., K. F. A. Hussein, and A. E. Farahat, "Compact dual-band (28/38 GHz) patch for MIMO antenna system of polarization diversity," The Applied Computational Electromagnetics Society Journal (ACES), 716-725, 2022.

21. Farahat, A. E. and K. F. A. Hussein, "Dual-band (28/38 GHz) wideband MIMO antenna for 5G mobile applications," IEEE Access, Vol. 10, 32213-32223, 2022.
doi:10.1109/ACCESS.2022.3160724

22. Hussain, M., W. A. Awan, E. M. Ali, et al. "Isolation improvement of parasitic element-loaded dual-band MIMO antenna for mm-wave applications," Micromachines, Vol. 13, No. 11, 1918, 2022.
doi:10.3390/mi13111918

23. Tadesse, A. D., O. P. Acharya, and S. Sahu, "A compact planar four-port MIMO antenna for 28/38 GHz millimeter-wave 5G applications," Advanced Electromagnetics, Vol. 11, No. 3, 16-25, 2022.
doi:10.7716/aem.v11i3.1947

24. Sabek, A. R., W. A. E. Ali, and A. A. Ibrahim, "Minimally coupled two-element MIMO antenna with dual band (28/38 GHz) for 5G wireless communications," Journal of Infrared, Millimeter, and Terahertz Waves, 1-14, 2022.

25. Esmail, B. A. and S. Koziel, "High isolation metamaterial-based dual-band MIMO antenna for 5G millimeter-wave applications," AEU --- International Journal of Electronics and Communications, Vol. 158, 154470, 2023.
doi:10.1016/j.aeue.2022.154470

26. Ikram, M., N. Nguyen-Trong, and A. M. Abbosh, "Realization of a tapered slot array as both decoupling and radiating structure for 4G/5G wireless devices," IEEE Access, Vol. 7, 159112-159118, 2019.
doi:10.1109/ACCESS.2019.2950660

27. Khalid, M., et al., "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071

28. Jaiswal, P. K., R. Bhattacharya, and A. Kumar, "A UWB antipodal Vivaldi antenna with high gain using metasurface and notches," AEU --- International Journal of Electronics and Communications, Vol. 159, 154473, 2023.
doi:10.1016/j.aeue.2022.154473

29. Tebache, S., A. Belouchrani, F. Ghanem, and A. Mansoul, "Novel reliable and practical decoupling mechanism for strongly coupled antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 5892-5899, Sept. 2019.
doi:10.1109/TAP.2018.2885457

30. Fritz-Andrade, E., H. Jardon-Aguilar, and J. A. Tirado-Mendez, "The correct application of total active re ection coefficient to evaluate MIMO antenna systems and its generalization to N ports," International J. of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 4, e22113, 2020.
doi:10.1002/mmce.22113

31. Kumar, A., A. Q. Ansari, B. K. Kanaujia, and J. Kishor, "High isolation compact four-port MIMO antenna loaded with CSRR for multiband applications," Frequenz, Vol. 72, No. 9-10, 415-427, 2018.
doi:10.1515/freq-2017-0276

32. Kumar, A., A. Q. Ansari, B. K. Kanaujia, et al. "A review on different techniques of mutual coupling reduction between elements of any MIMO antenna. Part 1: DGSs and parasitic structures," Radio Science, Vol. 56, No. 3, 1-25, 2021.

33. Khalid, M., S. I. Naqvi, N. Hussain, et al. "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071

34. Subitha, D., S. Velmurugan, M. V. Lakshmi, et al. "Development of Rogers RT/Duroid 5880 substrate-based MIMO antenna array for automotive radar applications," Advances in Materials Science and Engineering, Vol. 2022, 2022.