Vol. 113
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-20
Reconfigurable Intelligent Surface Assisted Full-Duplex Relay Hybrid FSO/RF Systems Over Atmospheric Turbulence with Foggy Impairments
By
Progress In Electromagnetics Research Letters, Vol. 113, 125-129, 2023
Abstract
The outage probability performance of a hybrid free space optical (FSO)/radio frequency (RF) system with a reconfigurable intelligent surface (RIS) assisted full-duplex relay is presented in this paper. The FSO link follows the Gamma-Gamma distribution over pointing error and atmospheric turbulence with random foggy impairments. The RF link between the relay and the destination is subject to Nakagami-m distributions, while the RIS links and the relay self-interference (SI) link follow Rayleigh fading. As a result, the RIS-to-relay link's cumulative distribution function (CDF) of the signal to interference plus noise ratio (SINR) is obtained. On the basis of this, the system's outage probability is determined according to the decode and forward relay protocol. Thus, Monte-Carlo simulations are utilized to verify the obtained expression's accuracy. Our findings show how atmospheric turbulence, pointing errors, fog conditions, and the number of RIS reflecting elements affect the system performance. Furthermore, it is concluded that, under the identical channel conditions, heterodyne detection performs better than intensity modulation/direct detection (IM/DD).
Citation
Kehinde Oluwasesan Odeyemi, Pius Adewale Owolawi, and Oladayo O. Olakanmi, "Reconfigurable Intelligent Surface Assisted Full-Duplex Relay Hybrid FSO/RF Systems Over Atmospheric Turbulence with Foggy Impairments," Progress In Electromagnetics Research Letters, Vol. 113, 125-129, 2023.
doi:10.2528/PIERL23073108
References

1. Odeyemi, K. O., P. A. Owolawi, and O. O. Olakanmi, "Reconfigurable intelligent surface-assisted HAPS relaying communication networks for multiusers under AF protocol: A performance analysis," IEEE Access, Vol. 10, 14857-14869, 2022.
doi:10.1109/ACCESS.2022.3146885

2. Chapala, V. K. and S. M. Zafaruddin, "RIS-assisted multihop FSO/RF hybrid system for vehicular communications over generalized fading,", arXiv preprint arXiv: 12944, 2021.

3. Björnson, E., Ö. Özdogan, and E. G. Larsson, "Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?," IEEE Wireless Communications Letters, Vol. 9, No. 2, 244-248, 2019.
doi:10.1109/LWC.2019.2950624

4. Odeyemi, K. O., G. Aiyetoro, P. A. Owolawi, and O. O. Olakanmi, "Performance analysis of reconfigurable intelligent surface in a dual-hop DF relay empowered asymmetric RF/FSO networks," Optical Quantum Electronics, Vol. 53, No. 11, 621, 2021.
doi:10.1007/s11082-021-03277-0

5. Rahman, Z., T. N. Shah, S. M. Zafaruddin, and V. K. Chaubey, "Performance of dual-hop relaying for OWC system over foggy channel with pointing errors and atmospheric turbulence," IEEE Transactions on Vehicular Technology, Vol. 71, No. 4, 3776-3791, 2021.
doi:10.1109/TVT.2021.3136365

6. Chatzidiamantis, N. D., G. K. Karagiannidis, E. E. Kriezis, and M. Matthaiou, "Diversity combining in hybrid RF/FSO systems with PSK modulation," 2011 IEEE International Conference on Communications (ICC), 1-6, IEEE, 2011.

7. Ibrahim, M., A. Badrudduza, M. Shakhawat Hossen, M. K. Kundu, and I. Shafique Ansari, "On effective secrecy throughput of underlay spectrum sharing $alpha $-$mu$/Málaga hybrid model under interference-and-transmit power constraints,", arXiv e-prints, arXiv: 2111.06574, 2021.

8. Usman, M., H.-C. Yang, and M.-S. Alouini, "Practical switching-based hybrid FSO/RF transmission and its performance analysis," IEEE Photonics Journal, Vol. 6, No. 5, 1-13, 2014.
doi:10.1109/JPHOT.2014.2352629

9. Vishwakarma, N. and R. Swaminathan, "Performance analysis of hybrid FSO/RF communication over generalized fading models," Optics Communications, Vol. 487, 126796, 2021.
doi:10.1016/j.optcom.2021.126796

10. Akbulut, A., "A practical approach to improve optical channel utilization period for hybrid FSO/RF systems," Advances in Electrical Electronic Engineering, Vol. 12, No. 6, 599-603, 2014.

11. Sharma, S., A. Madhukumar, and R. Swaminathan, "Effect of pointing errors on the performance of hybrid FSO/RF networks," IEEE Access, Vol. 7, 131418-131434, 2019.
doi:10.1109/ACCESS.2019.2940630

12. Singya, P. K., B. Makki, A. D’Errico, and M.-S. Alouini, "Hybrid FSO/THz-based backhaul network for mmWave terrestrial communication," IEEE Transactions on Wireless Communications, Vol. 22, No. 7, 4342-4359, 2022.
doi:10.1109/TWC.2022.3224331

13. Wu, Y., G. Li, and D. Kong, "Performance analysis of relayaided hybrid FSO/RF cooperation communication system over the generalized turbulence channels with pointing errors and Nakagami-m fading channels," Sensors, Vol. 23, No. 13, 6191, 2023.
doi:10.3390/s23136191

14. Swaminathan, R., S. Sharma, N. Vishwakarma, and A. Madhukumar, "HAPS-based relaying for integrated space-air-ground networks with hybrid FSO/RF communication: A performance analysis," IEEE Transactions on Aerospace Electronic Systems, Vol. 57, No. 3, 1581-1599, 2021.
doi:10.1109/TAES.2021.3050663

15. Mondal, S., A. Bhowal, S. Kashyap, R. S. Kshetrimayum, and M. Patra, "Outage probability analysis of hard-switching based mixed FSO/IRS-aided RF communication," 2023 National Conference on Communications (NCC), Guwahati, India, 2022.

16. Odeyemi, K. O., P. A. Owolawi, and O. O. Olakanmi, "On the performance of reconfigurable intelligent surface in cooperative decode-and-forward relaying for hybrid RF/FSO systems," Progress In Electromagnetics Research M, Vol. 110, 157-169, 2022.
doi:10.2528/PIERM22020601

17. Yang, L. and Y. Yuan, "Secrecy outage probability analysis for RIS-assisted NOMA systems," Electronics Letters, Vol. 56, No. 23, 1254-1256, 2020.
doi:10.1049/el.2020.2284

18. Odeyemi, K. O., P. A. Owolawi, and O. O. Olakanmi, "Performance analysis of reconfigurable intelligent surface assisted underwater optical communication system," Progress In Electromagnetics Research M, Vol. 98, 101-111, 2020.
doi:10.2528/PIERM20101203

19. Chapala, V. K. and S. M. Zafaruddin, "Unified performance analysis of reconfigurable intelligent surface empowered freespace optical communications," IEEE Transactions on Communications, Vol. 70, No. 4, 2575-2592, 2021.
doi:10.1109/TCOMM.2021.3139020

20. Odeyemi, K. O., P. A. Owolawi, and V. M. Srivastava, "Performance analysis of free space optical system with spatial modulation and diversity combiners over the Gamma Gamma atmospheric turbulence," Optics Communications, Vol. 382, 205-211, 2017.
doi:10.1016/j.optcom.2016.07.072

21. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 2014.

22. Tokgoz, S. C., S. Althunibat, S. L. Miller, and K. A. Qaraqe, "Outage analysis of relay-based dual-hop hybrid FSO-mmWave systems," IEEE Access, Vol. 10, 2895-2907, 2021.

23. Wang, Z., W. Shi, W. Liu, Y. Zhao, and K. Kang, "Performance analysis of full duplex relay assisted mixed RF/FSO system," Optics Communications, Vol. 474, 126170, 2020.
doi:10.1016/j.optcom.2020.126170

24. Odeyemi, K. O., P. A. Owolawi, and V. M. Srivastava, "A comparison between mathematical tools for analyzing FSO systems over gamma-gamma atmospheric channel," 2017 IEEE AFRICON, 549-554, IEEE, 2017.
doi:10.1109/AFRCON.2017.8095540