Vol. 119
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-10
A Quad-Band Low Power High Sensitive RF to DC Converter Circuit for RF Energy Harvesting Applications
By
Progress In Electromagnetics Research M, Vol. 119, 189-201, 2023
Abstract
In recent years, Radio Frequency Energy Harvesting (RFEH) has matured into a trustworthy and consistent method of obtaining ambient energy. For this energy to be utilized, it must be collected as efficiently over a broad range of frequencies as possible. In this regard, this article introduces a quad-band low-power, highly sensitive Radio Frequency (RF) to Direct Current (DC) signal converter circuit that operates at 1.5 GHz, 2.45 GHz, 3.6 GHz, and 5.5 GHz bands. The converter circuit is realized through single and dual-band converter circuit studies. These circuits comprise an impedance matching circuit, a voltage-doubler rectifier, a DC-pass filter with a resistive load of 5 kΩ, and a DC-DC voltage booster (LTC3108). The proposed quad-band converter circuit without a voltage booster gives a DC output voltage of 118 mV, 81 mV, 56 mV, and 24 mV at the four operational frequencies on a low input power of -25 dBm, respectively. A DC voltage of 3.3 V is obtained when the converter circuit is connected to a voltage booster. Maximum conversion efficiency achieved is 48% from four tones on a power input of -10 dBm. Circuit design steps, matching conditions, and performance parameters are presented using the Advanced Design System (ADS) and LTspice simulation tools.
Citation
Pavan Mehta, and Anveshkumar Nella, "A Quad-Band Low Power High Sensitive RF to DC Converter Circuit for RF Energy Harvesting Applications," Progress In Electromagnetics Research M, Vol. 119, 189-201, 2023.
doi:10.2528/PIERM23073105
References

1. Paz, H. P., V. S. Silva, E. V. Cambero, H. X. Araujo, I. R. Casella, and C. E. Capovilla, "A survey on low power RF rectifiers efficiency for low-cost energy harvesting applications," AEU --- International Journal of Electronics and Communications, Vol. 112, 52963, 2021.

2. Caselli, M., M. Ronchi, and A. Boni, "Power management circuits for low-power RF energy harvesters," Journal of Low Power Electronics and Applications, Vol. 10, 29, 2020.
doi:10.3390/jlpea10030029

3. Divakaran, S. K. and D. D. Krishna, "RF energy harvesting systems: An overview and design issues," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, e21633, 2019.
doi:10.1002/mmce.21633

4. Hesham, R., A. Soltan, and A. Madian, "Energy harvesting schemes for wearable devices," AEU --- International Journal of Electronics and Communications, Vol. 138, 153888, 2021.
doi:10.1016/j.aeue.2021.153888

5. Gao, M., C. Su, J. Cong, F. Yang, Y. Wang, and P. Wang, "Harvesting thermoelectric energy from railway track," Energy, Vol. 180, 315-329, 2019.
doi:10.1016/j.energy.2019.05.087

6. Silva-Leon, J., A. Cioncolini, M. R. Nabawy, A. Revell, and A. Kennaugh, "Simultaneous wind and solar energy harvesting with inverted flags," Applied Energy, Vol. 239, 846-858, 2019.
doi:10.1016/j.apenergy.2019.01.246

7. Gaur, A., S. Tiwari, C. Kumar, and P. Maiti, "Polymer biowaste hybrid for enhanced piezoelectric energy harvesting," ACS Applied Electronic Materials, Vol. 2, 1426-1432, 2020.
doi:10.1021/acsaelm.0c00197

8. Surender, D., T. Khan, F. A. Talukdar, A. De, Y. M. Antar, and A. P. Freundorfer, "Key components of rectenna system: A comprehensive survey," IETE Journal of Research, Vol. 68, 3379-3405, 2022.
doi:10.1080/03772063.2020.1761268

9. Ibrahim, H. H., M. J. Singh, S. S. Al-Bawri, S. K. Ibrahim, M. T. Islam, A. Alzamil, and M. S. Islam, "Radio frequency energy harvesting technologies: A comprehensive review on designing, methodologies, and potential applications," Sensors, Vol. 22, 4144, 2022.
doi:10.3390/s22114144

10. Ahmad, A., A. Ullah, C. Feng, M. Khan, S. Ashraf, M. Adnan, S. Nazir, and H. U. Khan, "Towards an improved energy efficient and end-to-end secure protocol for IoT healthcare applications," Security and Communication Networks, 1-10, 2020.

11. Muncuk, U., K. Alemdar, J. D. Sarode, and K. R. Chowdhury, "Multiband ambient RF energy harvesting circuit design for enabling batteryless sensors and IoT," IEEE Internet of Things Journal, Vol. 5, 2700-2714, 2018.
doi:10.1109/JIOT.2018.2813162

12. Ashraf, S., T. Ahmed, and S. Saleem, "NRSM: Node redeployment shrewd mechanism for wireless sensor network," Iran Journal of Computer Science, Vol. 4, 171-183, 2021.
doi:10.1007/s42044-020-00075-x

13. Khan, D., S. J. Oh, S. Yeo, Y. Ryu, S. In, R. E. Rad, I. Ali, Y. G. Pu, S. Yoo, M. Lee, and K. C. Hwang, "A solar/triboelectric/RF hybrid energy harvesting based high efficiency wireless power receiver," IEEE Transactions on Power Electronics, Vol. 36, 11148-11162, 2021.
doi:10.1109/TPEL.2021.3071374

14. Gaidhane, V. H., A. Mir, and V. Goyal, "Energy harvesting from far field RF signals," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, e21612, 2019.
doi:10.1002/mmce.21612

15. Boopathi, C. S., M. Sivaram, T. V. P. Sundararajan, R. Maheswar, P. Yupapin, and I. S. Amiri, "Bandenna for RF energy harvesting and flexible electronics," Microsystem Technologies, Vol. 27, 1857-1861, 2021.
doi:10.1007/s00542-021-05212-5

16. Mohan, A. and S. Mondal, "An impedance matching strategy for micro-scale RF energy harvesting systems," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, 1458-1462, 2020.
doi:10.1109/TCSII.2020.3036850

17. Churchill, K. K. P., G. Chong, H. Ramiah, M. Y. Ahmad, and J. Rajendran, "Low-voltage capacitive-based step-up DC-DC converters for RF energy harvesting system: A review," IEEE Access, Vol. 8, 186393-186407, 2020.
doi:10.1109/ACCESS.2020.3028856

18. Koohestani, M., J. Tissier, and M. Latrach, "A miniaturized printed rectenna for wireless RF energy harvesting around 2.45 GHz," AEU --- International Journal of Electronics and Communications, Vol. 127, 153478, 2020.
doi:10.1016/j.aeue.2020.153478

19. Shi, Y., J. Jing, Y. Fan, L. Yang, and M. Wang, "Design of a novel compact and efficient rectenna for WiFi energy harvesting," Progress In Electromagnetics Research C, Vol. 83, 57-70, 2018.
doi:10.2528/PIERC18012803

20. Meher, P., S. K. Mishra, and M. A. Halimi, "A low-profile compact broadband CP DRA for RF energy harvesting applications," IETE Journal of Research, 1-9, 2023.
doi:10.1080/03772063.2023.2237469

21. Mattsson, M., C. I. Kolitsidas, and B. L. G. Jonsson, "Dual-band dual-polarized full-wave rectenna based on differential field sampling," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 956-959, 2018.
doi:10.1109/LAWP.2018.2825783

22. El Mattar, S., A. Baghdad, and A. Ballouk, "A 2.45/5.8 GHz high-efficiency dual-band rectifier for low radio frequency input power," International Journal of Electrical and Computer Engineering, Vol. 12, 2169, 2022.

23. Dardeer, O. M., H. A. Elsadek, E. A. Abdallah, and H. M. Elhennawy, "A dual band circularly polarized rectenna for RF energy harvesting applications," The Applied Computational Electromagnetics Society Journal (ACES), 1594-1600, 2019.

24. Agrawal, S., M. S. Parihar, and P. N. Kondekar, "A quad-band antenna for multiband radio frequency energy harvesting circuit," AEU --- International Journal of Electronics and Communications, Vol. 85, 99-107, 2018.
doi:10.1016/j.aeue.2017.12.035

25. Selim, K. K., S. Wu, D. A. Saleeb, and S. S. Ghoneim, "A quad-band RF circuit for enhancement of energy harvesting," Electronics, Vol. 10, 1160, 2021.
doi:10.3390/electronics10101160

26. Keshavarz, R. and N. Shariati, "Highly sensitive and compact quad-band ambient RF energy harvester," IEEE Transactions on Industrial Electronics, Vol. 69, 3609-3621, 2021.
doi:10.1109/TIE.2021.3075888

27. Behera, B. R., P. Srikanth, P. R. Meher, and S. K. Mishra, "A compact broadband circularly polarized printed monopole antenna using twin parasitic conducting strips and rectangular metasurface for RF energy harvesting application," AEU --- International Journal of Electronics and Communications, Vol. 120, 153233, 2020.
doi:10.1016/j.aeue.2020.153233

28. Behera, B. R., P. R. Meher, and S. K. Mishra, "Metasurface superstrate inspired printed monopole antenna for RF energy harvesting application," Progress In Electromagnetics Research C, Vol. 110, 119-133, 2021.
doi:10.2528/PIERC21011405

29. SMS7630 SERIES, Skyworks Solutions, 2021, Available online: https://www.skyworksinc.com/media/SkyWorks/Documents/Products/201-300/Surface Mount Schottky Diodes 200041AG.pdf.
doi:10.2528/PIERC21011405

30. Mansour, M. M. and H. Kanaya, "Novel L-slot matching circuit integrated with circularly polarized rectenna for wireless energy harvesting," Electronics, Vol. 8, 651, 2019.
doi:10.3390/electronics8060651

31. Mehta, P., A. Nella, and M. Rajagopal, "An RF energy harvesting system at 5.5 GHz for WLAN networks," Proceedings of the 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 750-753, Jaipur, Rajasthan, India, December 2021.
doi:10.1109/InCAP52216.2021.9726392

32. Tafekirt, H., J. Pelegri-Sebastia, A. Bouajaj, and B. M. Reda, "A sensitive triple-band rectifier for energy harvesting applications," IEEE Access, Vol. 8, 73659-73664, 2020.
doi:10.1109/ACCESS.2020.2986797

33. Muhammad, S., J. J. Tiang, S. K. Wong, A. Iqbal, A. Smida, and M. K. Azizi, "A compact dual-port multi-band rectifier circuit for RF energy harvesting," Comput. Mater. Continua, Vol. 68, 167-184, 2021.
doi:10.32604/cmc.2021.016133

34. Kim, J. and I. Kwon, "Design of a high-efficiency DC-DC Boost converter for RF energy harvesting IoT sensors," Sensors, Vol. 22, 10007, 2022.
doi:10.3390/s222410007

35. LTC3108, Ultralow Voltage Step-Up Converter, and Power Manager, Analog Device, Available online: https://www.analog.com/media/en/technical-documentation/datasheets/LTC3108.pdf.

36. Chen, X., L. Huang, J. Xing, Z. Shi, and Z. Xie, "Energy harvesting system and circuits for ambient WiFi energy harvesting," Proceedings of the 2017 12th International Conference on Computer Science and Education (ICCSE), 769-772, Houston, TX, USA, August 22-25, 2017.

37. Pinto, D., A. Arun, S. Lenka, L. Colaco, S. Khanolkar, S. Betgeri, and A. Naik, "Design and performance evaluation of a WiFi energy harvester for energizing low power devices," Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), 1-8, Jeju, Korea, August 23-25, 2021.

38. Di Marco, P., V. Stornelli, G. Ferri, L. Pantoli, and A. Leoni, "Dual band harvester architecture for autonomous remote sensors," Sensors and Actuators A: Physical, Vol. 247, 598-603, 2016.
doi:10.1016/j.sna.2016.06.040