Vol. 122
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-12-04
Flexible Microstrip Patch Antenna Design on Jeans Substrate Radiating at 2.45 GHz for WBAN Application
By
Progress In Electromagnetics Research M, Vol. 122, 1-9, 2023
Abstract
This study presents a compact, low-profile, and flexible fabric antenna specifically designed for on-body Wireless Body Area Networks operating within the Industrial, Scientific, and Medical (ISM) frequency band at a central frequency of 2.45 GHz. The proposed antenna employs a jeans substrate, with a dielectric constant εr = 1.67 and loss tangent tanδ = 0.025, which is 0.5 mm in thickness, allowing for its flexibility. The antenna incorporates slots on the patch and a Defected Ground Structure (DGS), with a total size of 36 × 55 × 0.6 mm3 (0.29λo x 0.45λo x 0.005λo mm3). To assess the antenna's flexibility, bending analysis was performed, while its performance was evaluated using a phantom model that simulates human tissue, comprising skin, fat, and bone, with respective thicknesses of 1 mm, 0.5 mm, and 4 mm. The final model of the antenna operates at a central frequency of 2.45 GHz, with an impressive bandwidth of 0.8 GHz. The proposed design maintains a high level of directivity, gain, and Reflection Coefficient (S11) at the desired frequency, with values of 4.7 dBi, 3.6 dBi, and -41 dB, respectively. The Specific Absorption Rate (SAR) of the final antenna was measured on the above model and found to be 0.114 W/Kg for 1 g of tissue, which is well within the limits established by IEEE and FCC standards. Both the measured and simulated values of return loss and gain suggest that the proposed antenna is eminently suitable for body-worn applications.
Citation
Saikumar Mulkalla, Avish Fakirde, and Paritosh D. Peshwe, "Flexible Microstrip Patch Antenna Design on Jeans Substrate Radiating at 2.45 GHz for WBAN Application," Progress In Electromagnetics Research M, Vol. 122, 1-9, 2023.
doi:10.2528/PIERM23072903
References

1. Crosby, G. V., T. Ghosh, R. Murimi, and C. A. Chin, "Wireless body area networks for healthcare: A survey," International Journal of Ad Hoc Sensor & Ubiquitous Computing, Vol. 3, No. 3, 1, Jun. 2012.
doi:10.5121/ijasuc.2012.3301

2. Fu, Y. and J. Liu, "Monitoring system for sports activities using body area networks," Proceedings of The 8th International Conference on Body Area Networks, 408-413, 2013.

3. Sun, Yanke, Dwaynica A. Greaves, Guido Orgs, Antonia F. de C. Hamilton, Sally Day, and Jamie A. Ward, "Using wearable sensors to measure interpersonal synchrony in actors and audience members during a live theatre performance," Proceedings of The ACM on Interactive Mobile Wearable and Ubiquitous Technologies-IMWUT, Vol. 7, No. 1, 1-29, Mar. 2023.
doi:10.1145/3580781

4. Smida, Amor, Amjad Iqbal, Abdullah J. Alazemi, Mohamed I. Waly, Ridha Ghayoula, and Sunghwan Kim, "Wideband wearable antenna for biomedical telemetry applications," IEEE Access, Vol. 8, 15687-15694, 2020.
doi:10.1109/ACCESS.2020.2967413

5. Gao, Guo-Ping, Chen Yang, Bin Hu, Rui-Feng Zhang, and Shao-Fei Wang, "A wide-bandwidth wearable all-textile PIFA with dual resonance modes for 5 GHz WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4206-4211, Jun. 2019.
doi:10.1109/TAP.2019.2905976

6. Tang, Ming-Chun, Ting Shi, and Richard W. Ziolkowski, "Flexible efficient quasi-Yagi printed uniplanar antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5343-5350, Dec. 2015.
doi:10.1109/TAP.2015.2486807

7. Das, Soumyadeep and Debasis Mitra, "A compact wideband flexible implantable slot antenna design with enhanced gain," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 4309-4314, Aug. 2018.
doi:10.1109/TAP.2018.2836463

8. Arif, Ali, Muhammad Zubair, Mubasher Ali, Muhammad Umar Khan, and Muhammad Qasim Mehmood, "A compact, low-profile fractal antenna for wearable on-body wban applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 981-985, May 2019.
doi:10.1109/LAWP.2019.2906829

9. Alqadami, Abdulrahman. S. M., Anthony E. Stancombe, Konstanty S. Bialkowski, and Amin Abbosh, "Flexible meander-line antenna array for wearable electromagnetic head imaging," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 7, 4206-4211, Jul. 2021.
doi:10.1109/TAP.2020.3037742

10. Al-Sehemi, Abdullah G., Ahmed A. Al-Ghamdi, Nikolay T. Dishovsky, Nikolay T. Atanasov, and Gabriela L. Atanasova, "Flexible and small wearable antenna for wireless body area network applications," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 11-12, 1063-1082, 2017.
doi:10.1080/09205071.2017.1336492

11. Li, Y. J., Z. Y. Lu, and L. S. Yang, "CPW-fed slot antenna for medical wearable applications," IEEE Access, Vol. 7, 42107-42112, 2019.
doi:10.1109/ACCESS.2019.2908199

12. Nanda, Chandrajeet Kumar, Suparna Ballav, Ayan Chatterjee, and Susanta Kumar Parui, "A body wearable antenna based on jeans substrate with wide-band response," 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), 474-477, Amity Sch Engn & Technol, Noida, Feb. 2018.

13. El Hajj, W., C. Person, and J. Wiart, "A novel investigation of a broadband integrated inverted-F antenna design; Application for wearable antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3843-3846, Jul. 2014.
doi:10.1109/TAP.2014.2318061

14. Gil, I. and R. Fernandez-Garcia, "Wearable PIFA antenna implemented on jean substrate for wireless body area network," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 11-12, 1194-1204, 2017.
doi:10.1080/09205071.2017.1341854

15. Bailey, William H., Ralf Bodemann, Jerrold Bushberg, Chung-Kwang Chou, Robert Cleveland, Antonio Faraone, Kenneth R. Foster, Kenneth E. Gettman, Kevin Graf, Tim Harrington, Akimasa Hirata, Robert (Rob) Kavet, Jafar Keshvari, Bertram Jon Klauenberg, Alexandre Legros, David P. Maxson, John M. Osepchuk, J. Patrick Reilly, Richard (Ric) A. Tell, Artnarong Thansandote, Kenichi Yamazaki, Marvin C. Ziskin, Peter M. Zollman, and IEEE Int Comm Electromagnetic, "Synopsis of IEEE std c95.1™-2019, IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz," IEEE Access, Vol. 7, 171346-171356, 2019.
doi:10.1109/ACCESS.2019.2954823

16. Noor, S. K., N. Ramli, N. Ramli, and N. L. Hanapi, "A review of the wearable textile-based antenna using different textile materials for wireless applications," Open Journal of Science and Technology, No. 3, 2020.

17. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.

18. Ashyap, Adel Y. I., Samsul Haimi Bin Dahlan, Zuhairiah Zainal Abidin, Muhammad Hashim Dahri, Huda A. Majid, Muhammad Ramlee Kamarudin, See Khee Yee, Mohd Haizal Jamaluddin, Akram Alomainy, and Qammer H. Abbasi, "Robust and efficient integrated antenna with EBG-DGS enabled wide bandwidth for wearable medical device applications," IEEE Access, Vol. 8, 56346-56358, 2020.
doi:10.1109/ACCESS.2020.2981867

19. Wang, Mengjun, Ze Yang, Jianfei Wu, Jianhui Bao, Jianying Liu, Lulu Cai, Tao Dang, Hongxing Zheng, and Erping Li, "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3076-3086, Jun. 2018.
doi:10.1109/TAP.2018.2820733

20. Yang, Hongcai and Xiongying Liu, "Wearable dual-band and dual-polarized textile antenna for on- and off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2324-2328, Dec. 2020.
doi:10.1109/LAWP.2020.3032540

21. Lin, Xiaoyou, Yifan Chen, Zheng Gong, Boon-Chong Seet, Ling Huang, and Yilong Lu, "Ultrawideband textile antenna for wearable microwave medical imaging applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4238-4249, Jun. 2020.
doi:10.1109/TAP.2020.2970072

22. Simorangkir, Roy B. V. B., Yang Yang, Karu P. Esselle, and Basit A. Zeb, "A method to realize robust flexible electronically tunable antennas using polymer-embedded conductive fabric," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 50-58, Jan. 2018.
doi:10.1109/TAP.2017.2772036

23. Joshi, Rahil, Ezzaty Faridah Nor Mohd Hussin, Ping Jack Soh, Mohd Faizal Jam Los, Herwansyah Lago, Azremi Abdullah Al-Hadi, and Symon K. Podilchak, "Dual-band, dual-sense textile antenna with amc backing for localization using GPS and WBAN/WLAN," IEEE Access, Vol. 8, 89468-89478, 2020.
doi:10.1109/ACCESS.2020.2993371

24. Li, H., S. Sun, B. Wang, and F. Wu, "Design of compact single-layer textile MIMO antenna for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3136-3141, Jun. 2018.
doi:10.1109/TAP.2018.2811844

25. Iqbal, Amjad, Amor Smida, Abdullah J. Alazemi, Mohamed I. Waly, Nazih Khaddaj Mallat, and Sunghwan Kim, "Wideband circularly polarized MIMO antenna for high data wearable biotelemetric devices," IEEE Access, Vol. 8, 17935-17944, 2020.
doi:10.1109/ACCESS.2020.2967397

26. Mustafa, Ameena Banu and Tamilselvi Rajendran, "An effective design of wearable antenna with double flexible substrates and defected ground structure for healthcare monitoring system," Journal of Medical Systems, Vol. 43, No. 7, 186, Jul. 2019.
doi:10.1007/s10916-019-1306-5