Vol. 120
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-29
Design of a Hollow Dielectric Loading for Wideband Gain Enhancement of a Horn Antenna
By
Progress In Electromagnetics Research M, Vol. 120, 113-122, 2023
Abstract
The far-field gain of commercial horn antennas primarily depends on aperture area and flare length. Traditionally, for every dBi of gain increment, the flare length should increase by 20% and the aperture area by 10%. External lens classes, such as gradient refractive index, concave, or Fresnel, are used to improve gain by ≤ 2 dBi, but at the cost of a volumetric increase by 75% in the range of 4.8-6 GHz. We propose a hollow dielectric loading (HDL) loaded in the flare section of the horn antenna. The shape and position of the HDL are optimized using an evolutionary algorithm to obtain the maximum gain from a conical corrugated horn antenna (CCHA) at boresight. The optimized design yielded a total volume 84% smaller than traditional external lenses while achieving 3.5 dBi peak gain improvement in the operating frequency range. We also observed an improvement in the electric field by 24% while retaining parity in the impedance bandwidth. A 3D-printed prototype of the optimized CCHA and the HDL is fabricated and measured. The measured and simulated results demonstrated good agreement with a maximum difference of 4%.
Citation
Al-Moatasem Al-Hinaai, Anthony N. Caruso, Roy C. Allen, and Kalyan C. Durbhakula, "Design of a Hollow Dielectric Loading for Wideband Gain Enhancement of a Horn Antenna," Progress In Electromagnetics Research M, Vol. 120, 113-122, 2023.
doi:10.2528/PIERM23072804
References

1. Gupta, A., "A ridge-fed conical horn antenna for small satellites," Master of Science Electrical Engineering, The University of New Mexico Albuquerque, New Mexico, 2015.

2. Soares, P. A. G., P. Pinho, and C. A. Wuensche, "High performance corrugated horn antennas for CosmoGal satellite," Procedia Technology, Vol. 17, 667-673, 2014.
doi:10.1016/j.protcy.2014.10.198

3. Chaudhary, S. V., D. Pujara, J. Gupta, and H. Pandya, "Corrugated horn antenna as mode transition for millimeter-wave plasma diagnostics system," 2019 IEEE Indian Conference on Antennas and Propagation (InCAP), 1-4, Ahmedabad, India, 2019.

4. Yadav, S. V. and A. Chittora, "A compact high power UWB TEM horn antenna," 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 1-3, Bangalore, India, 2020.

5. Li, Y., G. Lei, W. Junhong, D. Shan, C. Di, W. Jingxue, and L. Yang, "3-D printed high-gain wideband waveguide fed horn antenna arrays for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 2868-2877, 2019.
doi:10.1109/TAP.2019.2899008

6. Belen, A., P. Mahouti, F. G¨une¸s, and O. Tari, "Gain enhancement of a traditional horn antenna using 3D printed square-shaped multi-layer dielectric lens for X-band applications," ACES Journal, Vol. 36, No. 2, 132-138, 2021.
doi:10.47037/2020.ACES.J.360203

7. Asok, A. O., G. N. S J, and S. Dey, "Double ridge horn antenna with curved dielectric loading for microwave imaging applications," 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 167-170, Jaipur, Rajasthan, India, 2021.
doi:10.1109/InCAP52216.2021.9726351

8. Cao, Y., W. Menglong, S. Daoyuan, and S. Dan, "A novel miniaturized four-ridged horn antenna with enhanced gain," International Journal of Antennas and Propagation, Vol. 2021, 8143395, 2021.

9. Asok, A. O., G. N. S J, A. Tripathi, S. Chauhan, K. S. Kiran, and S. Dey, "Double ridge conical horn antenna with dielectric loading for microwave imaging of human breast," 2022 IEEE Wireless Antenna and Microwave Symposium (WAMS), 1-4, Rourkela, India, 2022.

10. Liu, X., Y. Chen, and Z. Nie, "Study on antenna gain for limited area of radiation aperture," 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), 1-3, Shanghai, China, 2019.

11. Milligan, A. T., Modern Antenna Design, 285-335, John Wiley & Sons, Inc, 2005.
doi:10.1002/0471720615.ch6

12. Ewing, P. D., "Approximation technique for determining gain and radiation pattern of the horn antenna," Proceedings, IEEE Energy and Information Technologies in the Southeast, 296-301, Columbia, SC, USA, 1989.

13. Baltzis, K. B., "Calculation of the half-power beamwidths of pyramidal horns with arbitrary gain and typical aperture phase error," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 612-614, 2010.
doi:10.1109/LAWP.2010.2055031

14. Johnson, R. C., Antenna Engineering Handbook, 15-54, McGraw-Hill, 1993.

15. Balanis, A. C., Antenna Theory: Analysis and Design, 739-805, Wiley-Interscience, Hoboken, NJ, 2005.

16. Sahoo, S. K., M. Adhikary, A. Biswas, and M. J. Akhtar, "Multi-layer multi-dielectric lens loaded SIW horn antenna for Ku-band applications," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, Dusseldorf, Germany, 2021.

17. Gupta, R. C., S. Saxena, M. B. Mahajan, and R. Jyoti, "Design of dual-band multimode profiled smooth-walled horn antenna for satellite communication," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 338-341, 2010.
doi:10.1109/LAWP.2010.2048692

18. Hu, N., S. Liu, J. Liu, L. Zhao, and W. Xie, "A novel ultra-wideband corrugated feed horn antenna for 5G application," 2022 IEEE Conference on Antenna Measurements and Applications (CAMA), 1-4, Guangzhou, China, 2022.

19. Bressner, T. A. H., M. N. Johansson, A. B. Smolders, and U. Johannsen, "Elliptical dual-polarized high gain horn antenna for cell partitioning in millimeter-wave mobile communications," 2020 50th European Microwave Conference (EuMC), 220-223, Utrecht, Netherlands, 2021.

20. MATLAB, The MathWorks Inc., https://www.mathworks.com/products/matlab.htm.

21. CST Studio Suite, Dassault Systems, https://www.3ds.com/productsservices/simulia/products/cststudio-suite.

22. Jeffrey, A., , 20-22, Handbook of Mathematical Formulas and Integrals, Academic Press, 1995.