Vol. 113
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-10-31
Differential Wideband Antenna on Organic Substrate at 240 GHz with a Differential Wirebond Package
By
Progress In Electromagnetics Research Letters, Vol. 113, 35-42, 2023
Abstract
This letter investigates a differential, planar and wideband antenna on a commercial organic printed circuit board (PCB) substrate at 240 GHz with a novel packaging concept to integrate massive monolithical integrated circuits (MMICs). The antenna utilizes multiple series resonators to achieve a bandwidth of 75 GHz around 240 GHz. A novel differential bond wire package solution from chip to antenna feeds the differential antenna from an on-chip Marchand balun. The fabrication of the antenna and interconnect are analyzed, and potential improvements for future works are highlighted. Measurement proves the function of the designed package, which is competitive to the state of the art.
Citation
Joachim Hebeler, and Thomas Zwick, "Differential Wideband Antenna on Organic Substrate at 240 GHz with a Differential Wirebond Package," Progress In Electromagnetics Research Letters, Vol. 113, 35-42, 2023.
doi:10.2528/PIERL23072606
References

1. Rajatheva, N., I. Atzeni, E. Bjornson, A. Bourdoux, S. Buzzi, J.-B. Dore, S. Erkucuk, M. Fuentes, K. Guan, Y. Hu, X. Huang, J. Hulkkonen, J. M. Jornet, M. Katz, R. Nilsson, E. Panayirci, K. Rabie, N. Rajapaksha, M. Salehi, H. Sarieddeen, T. Svensson, O. Tervo, A. Tolli, Q. Wu, and W. Xu, "White paper on broadband connectivity in 6G,", 2020.
doi:10.1109/ACCESS.2021.3053486

2. De Lima, C., D. Belot, R. Berkvens, A. Bourdoux, D. Dardari, M. Guillaud, M. Isomursu, E.-S. Lohan, Y. Miao, A. N. Barreto, M. R. K. Aziz, J. Saloranta, T. Sanguanpuak, H. Sarieddeen, G. Seco-Granados, J. Suutala, T. Svensson, M. Valkama, B. Van Liempd, and H. Wymeersch, "Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges," IEEE Access, Vol. 9, 26902-26925, 2021.

3. Steinweg, L., J. Hebeler, T. Meister, T. Zwick, and F. Ellinger, "8.0-pj/bit bpsk transmitter with LO phase steering and 52-Gbps data rate operating at 246 GHz," IEEE Transactions on Microwave Theory and Techniques, 1-10, 2023.
doi:10.23919/EuMC.2017.8230825

4. Lacombe, E., F. Gianesello, A. Bisognin, C. Luxey, D. Titz, H. Gulan, and T. Zwick, "240 GHz antenna integrated on low-cost organic substrate packaging technology targeting high-data rate sub-THz telecommunication," 2017 47th European Microwave Conference (EuMC), 164-167, 2017.

5. Schafer, J., D. Muller, T. Zwick, G. Eren, and I. Kallfass, "Tx front end concept for FMCW radar with frequency scanning antenna at 240 GHz," 2018 International Workshop on Antenna Technology (iWAT), 1-4, 2018.
doi:10.23919/EuMC54642.2022.9924340

6. Hebeler, J., L. Steinweg, and T. Zwick, "Differential bondwire interface for chip-to-chip and chipto-antenna interconnect above 200 GHz," 2022 52nd European Microwave Conference (EuMC), 306-309, 2022.
doi:10.23919/EuMC.2018.8541732

7. Ahmed, F., M. Furqan, and A. Stelzer, "120-GHz and 240-GHz broadband bow-tie antennas in EWLB package for high resolution radar applications," 2018 48th European Microwave Conference (EuMC), 1109-1112, 2018.
doi:10.1109/TTHZ.2020.3038026

8. Shaulov, E., S. Jameson, and E. Socher, "A zero bias J-band antenna-coupled detector in 65-nm CMOS," IEEE Transactions on Terahertz Science and Technology, Vol. 11, No. 1, 62-69, 2021.
doi:10.1109/APUSNCURSINRSM.2019.8889358

9. Ahmad, W., M. Kucharski, H. Ng, and D. Kissinger, "A compact efficient D-band micromachined on-chip differential patch antenna for radar applications," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2201-2202, 2019.
doi:10.1109/TAP.2022.3209670

10. Wu, P., K. Liu, and Z. Yu, "220 GHz high-gain substrate integrated antennas with low fabrication cost based on higher order mode and PCB technology," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 18-28, 2023.