Vol. 119
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-09-25
Millimeter Wave Attenuation in the Coastal Area of the Gulf of Guinea Subject to Heavy Rainfalls
By
Progress In Electromagnetics Research M, Vol. 119, 89-103, 2023
Abstract
Wireless communication systems have developed significantly over the last few decades. Due to the saturation of lower frequencies of microwave spectrum (3-30 GHz) and the increasing need for high speed, emerging systems for consumer or professional use are progressively shifting to upper microwave and millimeter waves. Our study proposes a methodology for evaluating and classifying losses on a vertically polarized millimeter wave link at 80 GHz. To achieve this, we simulated the link budget of a Nokia 80UBT millimeter wave link operating in its real propagation space (with overground) with Pathloss 5.1 Design tool. Then we built a 3.58 km full-scale link in the Tongo-Bassa watershed of the coastal city of Douala in Cameroon. Analysing data collected over the period from December 06, 2020 to December 16, 2021 under Power BI allowed us to characterize the response of the millimeter signal in free space, during dry and rainy seasons. We then challenge ITU-R P.837-7 and ITU-R.P.838-3 Recommendations on statistical models of rainfall for propagation modeling, especially for millimeter signals propagated in an equatorial climate with heavy rainfalls. The study estimated a rainfall rate for 0.01% of the time at 110.1 mm/h, with a millimeter link cut-off for a rainfall rate greater than 64.8 mm/h, with a specific attenuation due to rain of 6.5 dB/km.
Citation
Benjamin Tanga Louk, Raphael Onguene, Serge Raoul Dzonde Naoussi, Sakaros Bogning, Jacques Etame, Modeste Kacou, and Patrick Herve Ntanguen, "Millimeter Wave Attenuation in the Coastal Area of the Gulf of Guinea Subject to Heavy Rainfalls," Progress In Electromagnetics Research M, Vol. 119, 89-103, 2023.
doi:10.2528/PIERM23071204
References

1. Collonge, S., "Caracterisation et modelisation de la propagation des ondes electromagnetiques a 60 GHz a l'interieur des batiments,", Diss. INSA de Rennes, 2003.
doi:10.1007/978-3-031-06153-0_2

2. Ericsson, A. B., "Delivering high-capacity and cost-efficient backhaul for broadband networks today and in the future,", 2015.

3. ITU-R.2006 "Dispositions des canaux radioelectriques et des blocs de frequences radioelectriques pour les systemes hertziens fixes fonctionnant dans les bandes 71-76 et 81-86 GHz,", International Telecommunication Union, Geneva, Switzerland, 2012.
doi:10.2528/PIERC22052507

4. Huawei "Huawei RTN 300 E-band Microwave,", 2016.

5. Ceriaco, L. M. P., B. S. Santos, R. F. Lima, et al. "Physical geography of the Gulf of Guinea oceanic islands," Biodiversity of the Gulf of Guinea Oceanic Islands: Science and Conservation, 13-36, Springer Cham, 2022.
doi:10.11591/ijeecs.v7.i1.pp164-169

6. Arato, S. S. and V. K. Oduol, "Performance analysis of E-band 70/80 GHz frequency segment for point to point gigabit connectivity," International Journal for Innovation Education and Research, Vol. 4, No. 4, 2016.
doi:10.11591/ijeecs.v24.i2.pp937-948

7. Ntanguen, P. H., A. N. Takougang, and A. T. Sandjon, "Raindrop size distribution and rainfall attenuation modeling from disdrometer measurement in Central Africa: Case of Cameroon," Progress In Electromagnetics Research C, Vol. 121, 243-253, 2022.
doi:10.11591/ijeecs.v14.i2.pp1012-1017

8. Tonye, E., "Developpement des Telecommunications au Cameroun a l'horizon 2035,", 2012, www.enspy-telecom.org.

9. Alhilali, M., J. Din, M. Schonhuber, and H. Y. Lam, "Estimation of millimeter wave attenuation due to rain using 2D video distrometer data in Malaysia," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 7, No. 1, 164-169, 2017.

10. Mom, J., S. Soo Tyokighir, and G. Igwue, "Development of a new rain attenuation model for tropical location," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 24, No. 2, 937-948, 2021.

11. Ghanim, M., M. Alhilali, J. Din, and H. Y. Lam, "Rain attenuation statistics over 5G millimetre wave links in Malaysia," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 14, No. 2, 1012-1017, 2019.
doi:10.3390/s21041207

12. Evans, B., "Planning a microwave link: It's not just line of sight! Evans engineering solutions," Broadcasters Clinic, Middleton, WI, 2012.

13. Alcatel University "Introduction aux Faisceaux Hertziens,", 8AS 90001 1774 VT ZZB, 2008.

14. Lehpamer, H., "Microwave transmission networks: Planning, design, and deployment,", McGraw-Hill Education, 2010.
doi:10.2528/PIERM17030503

15. Samad, Md A., F. D. Diba, and D.-Y. Choi, "A survey of rain attenuation prediction models for terrestrial links --- Crrent research challenges and state-of-the-art," Sensors, Vol. 21, No. 4, 1207, 2021.

16. ITU, Recommandation UIT-R P.837-7, "Caracteristiques des precipitations pour la modelisation de la propagation,", 2017.

17. ITU, Recommandation ITU-R P.838-3, "Specific attenuation model for rain for use in prediction methods,", 2005.
doi:10.3390/w14111768

18. Nauval, F., M. Marzuki, and H. Hashiguchi, "Regional and diurnal variations of rain attenuation obtained from measurement of raindrop size distribution over Indonesia at Ku, Ka and W bands," Progress In Electromagnetics Research M, Vol. 57, 25-34, 2017.

19. CUD "Plan Directeur d'Urbanisme de Douala a l'horizon 2025,", 2015.

20. Minepded, PNACC-Cameroun, "Plan National d'Adaptation aux Changements Climatiques du Cameroun," Ministere de l'environnement, de la protection de la nature et du developpement durable, 2015.
doi:10.1007/s40808-017-0343-7

21. Iroume, J. Y.-A., R. Onguene, F. Djanna Koffi, A. Colmet-Daage, T. Stieglitz, W. Essoh Sone, S. Bogning, J. M. Olinga Olinga, R. Ntchantcho, J.-C. Ntonga, et al. "The 21st August 2020 Flood in Douala (Cameroon): A major urban flood investigated with 2D HEC-RAS modeling," Water, Vol. 14, 1768, 2022.

22. Ntanguen, P. H., A. Nzeukou, R. Onguene, A. T. Sandjon, and R. Sonfack, "Parametrization of drop size distribution with rain rate for microwave and millimeter wave applications in Central Africa," Indian J. Phys., 2023.
doi:10.1109/PROC.1967.5571

23. Yves, R. H. and Associes Inc., "Pathloss 5.0 Training Course: Part II,", Software Operation, Feb. 4, 2014.
doi:10.1615/TelecomRadEng.2022041459

24. Tanessong, R. S., D. A. Vondou, Z. Y. Djomou, et al. "WRF high resolution simulation of an extreme rainfall event over Douala (Cameroon): A case study," Modeling Earth Systems and Environment, Vol. 3, 927-942, 2017.

25. Findi, E. N., M. N. Wantim, and S. N. Ayonghe, "Assessing rainfall and temperature trend: Implication on ood patterns in vulnerable Communities of Limbe and Douala, Cameroon," International Journal of Environmental Science, Vol. 7, 2022.

26. Weibel, G. and H. Dressel, "Propagation studies in millimeter-wave link systems," Proceedings of the IEEE, Vol. 755, No. 4, 497-513, 1967.

27. Sanyaolu, D., O. F. Dairo, A. O. Soge, and A. A. Willoughby, "Prediction of rain-induced attenuation along earth-space links at millimeter wave bands over West African Region," Telecommunications and Radio Engineering, Vol. 80, No. 11, 2021.