Vol. 118
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-08-28
Simultaneous Detection of Co2 and n 2O Based on Quartz-Enhanced Photothermal Spectroscopy by Using NIR and MIR Lasers
By
Progress In Electromagnetics Research M, Vol. 118, 137-149, 2023
Abstract
Quartz-enhanced photothermal spectroscopy (QEPTS) technique is suitable for simultaneous measurement of multi-gas in near-infrared (NIR) and mid-infrared (MIR) bands with advantages of wide spectral response and high sensitivity. Here, we report a multi-gas sensing system based on QEPTS using NIR and MIR Lasers. A quartz tuning fork (QTF) with a resonant frequency f0 of 32.742 kHz was employed as a photothermal detector. A continuous wave distributed feedback (CW-DFB) fiber-coupled diode laser with a center wavelength of 1.58 µm and an interband cascade laser (ICL) with a center wavelength of 4.47 μm were used as the light sources to simultaneously irradiate on different surfaces of QTF for scanning the absorption lines of carbon dioxide (CO2) and nitrous oxide (N2O). A multi-pass cell with an effective optical path of 40 m and a 40 cm absorption cell were selected for the measurements of CO2 and NO2, respectively. The developed sensor was validated by the detection of mixtures containing 3000 ppm CO2 and 20 ppm N2O. The relationships between the second harmonic (2f) amplitude of the QEPTS signal and the CO2 and N2O concentrations were investigated. Allan deviation analysis shows that this sensor had excellent stability and high sensitivity with a minimum detection limit (MDL) of 2.729 ppm for CO2 in an integration time of 195 s and 0.038 ppb for N2O in an integration time of 90 s, respectively.
Citation
Fangmei Li, Tie Zhang, Gaoxuan Wang, and Sailing He, "Simultaneous Detection of Co2 and n 2O Based on Quartz-Enhanced Photothermal Spectroscopy by Using NIR and MIR Lasers," Progress In Electromagnetics Research M, Vol. 118, 137-149, 2023.
doi:10.2528/PIERM23070801
References

1. Sander, J., J. F. Eichner, E. Faust, and M. Steuer, "Rising variability in thunderstorm-related U.S. losses as a reflection of changes in large-scale thunderstorm forcing," Weather, 317-331, 2013.

2. Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O'Gorman, and N. Maher, "More extreme precipitation in the world's dry and wet regions," Nature Climate Change, Vol. 6, 508-513, 2016.
doi:10.1038/nclimate2941

3. Stroeve, J., A. Barrett, M. Serreze, and A. Schweiger, "Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness," The Cryosphere, Vol. 8, 1839-1854, 2014.
doi:10.5194/tc-8-1839-2014

4. Chen, I-C., J. Donald, Fahey, W. David, Hibbard, and K. Al, "Climate science special report: Fourth national climate assessment, Volume I," Ecological Research, 2017.

5. Wuebbles, D., D. R. Easterling, K. Hayhoe, T. Knutson, R. E. Kopp, J. P. Kossin, K. E. Kunkel, A. N. Legrande, C. Mears, and W., "Our globally changing climate. Chapter 1," Climate Science Special Report: Fourth National Climate Assessment, 2017.

6. Melillo, J. M., T. Richmond, and G. W. Yohe (eds.), Climate Change Impacts in the United States: The Third National Climate Assessment, Vol. 61, No. 12, 46-48, 2014.
doi:10.7930/J0Z31WJ2

7. Kiehl, J. T. and K. E. Trenberth, "Earth's annual global mean energy budget," Bulletin of the American Meteorological Society, Vol. 78, No. 2, 1997.
doi:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2

8. Crippa, M., E. Solazzo, D. Guizzardi, F. Monforti-Ferrario, and A. Leip, "Food systems are responsible for a third of global anthropogenic GHG emissions," Nature Food, Vol. 2, No. 3, 1-12, 2021.
doi:10.1038/s43016-021-00225-9

9. Addington, O., Z.-C. Pongetti, T. Shia, R.-L. Gurney, K. R. Liang, J. Roest, G. He, L. Yung, Y. L. Sander, and P. Stanley, "Estimating nitrous oxide (N2O) emissions for the Los Angeles Megacity using mountaintop remote sensing observations," Remote Sensing of Environment: An Interdisciplinary Journal, Vol. 259, No. 1, 2021.

10. Link, M. S., "Part 7: Adult advanced cardiovascular life support: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care (Vol. 132, S444, 2015)," Circulation: An Official Journal of the American Heart Association, 2015.

11. Nunn, J. F. and M. Saklad, "Ventilation and end-tidal carbon dioxide tension a study during routine anaesthesia," Survey of Anesthesiology, Vol. 3, No. 3, 261-262, 1959.

12. Nam, H.-J., T. Sasaki, and N. Koshizaki, "Optical CO gas sensor using a cobalt oxide thin film prepared by pulsed laser deposition under various argon pressures," The Journal of Physical Chemistry B, Vol. 110, No. 46, 23081-23084, 2006.
doi:10.1021/jp063484f

13. Elwi, T. A. and W. J. Khudhayer, "A passive wireless gas sensor based on microstrip antenna with copper nanorods," Progress In Electromagnetics Research B, Vol. 55, 347-364, 2013.
doi:10.2528/PIERB13082002

14. Hu, L., Research of quartz-enhanced photoacoustic and photothermal spectroscopy-based gas sensing technique, Jilin University, 2021.

15. Xing, Y., G. Wang, T. Zhang, F. Shen, L. Meng, L. Wang, F. Li, Y. Zhu, Y. Zheng, N. He, and S. He, "VOC detections with optical spectroscopy," Progress In Electromagnetics Research, Vol. 173, 71-92, 2022.
doi:10.2528/PIER22033004

16. Harren, F., "Laser-based trace gas detection within biology and human health science," Optical Instrumentation for Energy and Environmental Applications, 2014.

17. Ren, W., A. Farooq, D.F. Davidson, and R. K. Hanson, "CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm," Applied Physics, 2012.
doi:10.1007/s00339-011-6739-8

18. Thaler, K. M., C. Berger, C. Leix, J. E. Drewes, R. Niessner, and C. Haisch, "Photoacoustic spectroscopy for the quantification of N2O in the off gas of wastewater treatment plants," Analytical Chemistry, Vol. 89, No. 6, 3795-3801, 2017.
doi:10.1021/acs.analchem.7b00491

19. Shi, C., D. Wang, Z. Wang, L. Ma, Q. Wang, K. Xu, S. C. Chen, and W. Ren, "A mid-infrared fiber-coupled QEPAS nitric oxide sensor for real-time engine exhaust monitoring," IEEE Sensors Journal, Vol. 17, No. 22, 7418-7424, 2017.
doi:10.1109/JSEN.2017.2758640

20. Zhang, T., G. Zhang, X. Liu, G. Gao, and T. Cai, "A TDLAS sensor for simultaneous measurement of temperature and C2H4 concentration using differential absorption scheme at high temperature," Frontiers in Physics, Vol. 8, 2020.

21. Cai, T., G. Gao, M. Wang, G. Wang, Y. Liu, and X. Gao, "Simultaneous measurements of temperature and CO2 concentration employing diode laser absorption near 2.0 μm," Applied Physics B. Lasers and Optics, Vol. B118, No. 3, 471-480, 2015.
doi:10.1007/s00340-015-6015-2

22. Liu, C. and L. Xu, "Laser absorption spectroscopy for combustion diagnosis in reactive flows: A review," Applied Spectroscopy Reviews, 1-44, 2018.
doi:10.1080/05704928.2017.1352509

23. Hodgkinson, J. and R. P. Tatam, "Optical gas sensing: A review," Measurement Science & Technology, Vol. 24, No. 1, 2013.
doi:10.1088/0957-0233/24/1/012004

24. Hu, L., C. Zheng, Y. Zhang, J. Zheng, and F. K. Tittel, "Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing," Optics Letters, Vol. 45, No. 7, 2020.
doi:10.1364/OL.388754

25. Ma, Y., R. Lewicki, M. Razeghi, and F. K. Tittel, "QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL," Optics Express, Vol. 21, No. 1, 1008, 2013.
doi:10.1364/OE.21.001008

26. Yin, X., H. Wu, L. Dong, B. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F.K. Tittel, "ppb-level SO2 photoacoustic sensors with a suppressed absorption-desorption effect by using a 7.41 μm external-cavity quantum cascade laser," ACS Sensors, Vol. 5, No. 2, 549-556, 2020.
doi:10.1021/acssensors.9b02448

27. Liu, K., J. Mei, W. Zhang, W. Chen, and X. Gao, "Multi-resonator photoacoustic spectroscopy," Sensors & Actuators B: Chemical, Vol. 251, 632-636, Nov. 2017.

28. Gong, Z. F., G. J. Wu, X. Jiang, H. E. Li, T. L. Gao, M. Guo, F. X. Ma, K. Chen, L. Mei, W. Peng, and Q. X. Yu, "All-optical high-sensitivity resonant photoacoustic sensor for remote CH4 gas detection," Optics Express, Vol. 29, No. 9, 13600-13609, 2021.
doi:10.1364/OE.424387

29. Ma, Y. F., W. Feng, S. D. Qiao, Z. X. Zhao, S. F. Gao, and Y. Y. Wang, "Hollow-core anti-resonant fiber based light-induced thermoelastic spectroscopy for gas sensing," Optics Express, Vol. 30, No. 11, 18836-18844, 2022.
doi:10.1364/OE.460134

30. Kosterev, A. A., A. B. Yu, R. F. Curl, and F. K. Tittel, "Quartz-enhanced photoacoustic spectroscopy," Optics Letters, Vol. 27, No. 21, 1902-1904, 2002.
doi:10.1364/OL.27.001902

31. Ma, Y. F., "Recent advances in QEPAS and QEPTS based trace gas sensing: A review," Frontiers in Physics, Vol. 8, 2020.

32. Ma, Y., Y. Hong, S. Qiao, Z. Lang, and X. Liu, "H-shaped acoustic micro-resonator-based quartz-enhanced photoacoustic spectroscopy," Optics Letters, Vol. 3, 47, 2022.

33. Ma, Y., Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, "HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork," Sensors & Actuators B: Chemical, Vol. 233, No. 5, 388-393, 2016.
doi:10.1016/j.snb.2016.04.114

34. Wu, H., A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, "Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing," Applied Physics Letters, Vol. 107, No. 11, 2015.

35. Qiao, S. D., A. Sampaolo, P. Patimisco, V. Spagnolo, and Y. F. Ma, "Ultra-highly sensitive HCl-LITES sensor based on a low-frequency quartz tuning fork and a fiber-coupled multi-pass cell," Photoacoustics, Vol. 27, 2022.

36. He, Y., Y. Ma, Y. Tong, X. Yu, and F. K. Tittel, "Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell," Optics Letters, Vol. 44, No. 8, 1904-1907, 2019.
doi:10.1364/OL.44.001904

37. Ma, Y., Y. Hu, S. Qiao, Y. He, and F. K. Tittel, "Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy," Photoacoustics, Vol. 20, 100206, 2020.
doi:10.1016/j.pacs.2020.100206

38. Zhang, Q., J. Chang, Z. Cong, and Z. Wang, "Long-path quartz tuning fork enhanced photothermal spectroscopy gas sensor using a high power Q-switched fiber laser," Measurement, Vol. 156, 107601, 2020.
doi:10.1016/j.measurement.2020.107601

39. Zhou, S., L. Xu, K. Chen, L. Zhang, B. Yu, T. Jiang, and J. Li, "Absorption spectroscopy gas sensor using a low-cost quartz crystal tuning fork with an ultrathin iron doped cobaltous oxide coating," Sensors and Actuators B: Chemical, Vol. 326, 2020.

40. Hu, Y. Q., S. D. Qiao, Y. He, Z. T. Lang, and Y. F. Ma, "Quartz-enhanced photoacoustic-photothermal spectroscopy for trace gas sensing," Optics Express, Vol. 29, No. 4, 5121-5127, 2021.
doi:10.1364/OE.418256

41. Rothman, L. S., I. E. Gordon, Y. Babikov, and A. Barbe, "The HITRAN2016 molecular spectroscopic database," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 130, No. 11, 4-50, 2017.