Vol. 119
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-09-26
Design of a Novel Miniaturized Wide Stopband Filtering Coupler
By
Progress In Electromagnetics Research M, Vol. 119, 105-116, 2023
Abstract
This paper designs a miniaturized, wide stopband microstrip filtering coupler based on coupled resonators. Firstly, a short-stub loaded uniform-impedance resonator (SSLUIR) is proposed, , and the size of the SSLUIR is reduced by adjusting the impedance ratio of the stubs and bending them. Then, the resonance performance of SSLUIR during electrical and magnetic coupling is studied. By adjusting the electrical length of the short stubs, higher harmonics are suppressed, and the upper stopband is widened. Finally, a 3 dB 180° microstrip filtering coupler is designed based on SSLUIRs. The measurement results show that the center frequency of the filtering coupler is 2.43 GHz, with a relative bandwidth of 6.6%. It can suppress harmonics within the 8.2f0 range by more than 18 dB and has a size of 0.23λg×0.33λg. The correctness of the design method for miniaturized and wide stopband filtering coupler has been verified.
Citation
Xiaming Mo, Yongkang Yuan, Minquan Li, Pingjuan Zhang, Yajing Yan, Guangxiu Zhao, and Ziyun Tu, "Design of a Novel Miniaturized Wide Stopband Filtering Coupler," Progress In Electromagnetics Research M, Vol. 119, 105-116, 2023.
doi:10.2528/PIERM23070203
References

1. Shen, G., W. Che, W. Feng, et al. "A miniaturized Ka-band bandpass filter using folded hybrid resonators based on monolithic microwave integrated circuit technology," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 6, 1778-1782, 2021.
doi:10.1109/TCSII.2020.3048773

2. Seo, J., I. Yoon, J. Jung, et al. "Miniaturized dual-band broadside/endfire antenna-in-package for 5G smartphone," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8100-8114, 2021.
doi:10.1109/TAP.2021.3088230

3. Wang, W., Y. Zheng, and Y. Wu, "Miniaturized single-ended-to-balanced arbitrary four-section coupled-line coupler with inherent impedance matching," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 10, 1929-1933, 2020.
doi:10.1109/TCSII.2019.2960870

4. Ahn, H. R. and M. M. Tentzeris, "Arbitrary power-division branch-line hybrids for high-performance, wideband, and selective harmonic suppressions from 2f0," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 3, 978-987, 2019.
doi:10.1109/TMTT.2019.2892444

5. Inaba, T. and H. Hayashi, "3-branch-line coupler with harmonic suppression by using short stubs," 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), 622-623, IEEE, 2020.
doi:10.1109/GCCE50665.2020.9291846

6. Liu, I., M. Guan, X. Li, and Z. Wang, "Coupled line forward directional coupler with inherent harmonics suppression at 2f0," 2020 Cross Strait Radio Science & Wireless Technology Conference, 1-3, IEEE, 2020.

7. Lalbakhsh, A., et al., "Design of a compact planar transmission line for miniaturized rat-race coupler with harmonics suppression," IEEE Access, Vol. 9, 129207-129217, 2021.
doi:10.1109/ACCESS.2021.3112237

8. Coromina, J., P. Velez, J. Bonache, and F. Martin, "Branch line couplers with small size and harmonic suppression based on non-periodic step impedance shunt stub (SISS) loaded lines," IEEE Access, Vol. 8, 67310-67320, 2020.
doi:10.1109/ACCESS.2020.2985569

9. Dong, G., W. Wang, Y. Wu, et al. "Filtering rat-race couplers with impedance transforming characteristics based on terminated coupled line structures," IET Microwaves, Antennas & Propagation, Vol. 14, No. 8, 734-742, 2020.
doi:10.1049/iet-map.2019.0631

10. Shao, Q., F. C. Chen, Q. X. Chu, et al. "Novel filering 180 hybrid coupler and its application to 2 x 4 filtering butler matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 7, 3288-3296, 2018.
doi:10.1109/TMTT.2018.2829894

11. Rezaei, A. and L. Noori, "Microstrip hybrid coupler with a wide stop-band using symmetric structure for wireless applications," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 17, 23-31, 2018.
doi:10.1590/2179-10742018v17i11121

12. Zheng, Y., W. Wang, and Y. Wu, "Synthesis of wideband filtering couplers for arbitrary high power-division ratios based on three different types of coupled-line sections," IEEE Transactions on Circuits and Systems, Vol. 68, No. 4, 1218-1222, 2021.

13. Wang, X., J. P. Wang, L. Zhu, et al. "Compact stripline dual-band bandpass filters with controllable frequency ratio and high selectivity based on self-coupled resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 1, 102-110, 2020.
doi:10.1109/TMTT.2019.2945768

14. Lin, T.-W., J.-Y. Wu, and J.-T. Kuo, "Compact filtering branch-line coupler with source-load coupling," 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 1-3, IEEE, 2016.

15. Zhao, Z., H. Liu, J. Ren, Z. Wang, and S. Fang, "Wideband filtering rat-race coupler with shared triple-mode resonator," Electronics, Vol. 12, No. 12, 2701, 2023.
doi:10.3390/electronics12122701