Vol. 112
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-08-19
A Novel Miniaturized Image Rejection Bandpass Filter Basing on Stepped-Impedance Resonators
By
Progress In Electromagnetics Research Letters, Vol. 112, 27-34, 2023
Abstract
In order to meet the requirements for the suppression of mirror frequencies in the 5G RF front end, this paper proposes a novel miniaturized image rejection bandpass filter by loading Stepped-Impedance Resonators (SIR). By analyzing the relationship between the impedance ratio of a half-wavelength SIR and its electrical length, we have designed an improved second-order bandpass filter, which reduces the size by 34.3% compared to traditional five-order hairpin filters. In order to further enhance the performance of the filter, the use of a radial stub, as opposed to the traditional rectangular open stub, allows for the generation of a wider band transmission zero, which can be analyzed using lumped equivalent circuits. This integration improves the stopband rejection of the filter. The results show that the passband range is 5.35 GHz-6.64 GHz; the rejection in the stopband range 8.10 GHz-11.98 GHz is over 45 dB; and the size is only 0.385λg×0.295λg.
Citation
Guangxiu Zhao, Chen Li, Minquan Li, Pingjuan Zhang, Yajing Yan, Xiaming Mo, and Ziyun Tu, "A Novel Miniaturized Image Rejection Bandpass Filter Basing on Stepped-Impedance Resonators," Progress In Electromagnetics Research Letters, Vol. 112, 27-34, 2023.
doi:10.2528/PIERL23063006
References

1. Oughton, E. J., W. Lehr, K. Katsaros, et al. "Revisiting wireless internet connectivity: 5G vs Wi-Fi6," Telecommunications Policy, Vol. 45, No. 5, 102127, 2021.
doi:10.1016/j.telpol.2021.102127

2. Sankaran, S. G. and S. R. Gulasekaran, Wi-Fi6: Protocol and Network, Artech House, 2021.

3. Naik, G., J.-M. Park, J. Ashdown, and W. Lehr, "Next generation Wi-Fi and 5G NR-U in the 6 GHz bands: Opportunities and challenges," IEEE Access, Vol. 8, 153027-153056, 2020.
doi:10.1109/ACCESS.2020.3016036

4. Sun, J. X., Z. X. Huang, X. L. Wu, et al. "Design of image-reject hairpin filter applied for Ku-band LNB," Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory, 1161-1164, Guangzhou, 2010.

5. Yang, L., J. Qiang, S. Liu, et al. "A novel wideband bandpass filter based on CSRR-loaded substrate integrated folded waveguide," International Journal of RF and Microwave Computer-aided Engineering, Vol. 30, No. 6, e22181.1-e22181.9, 2020.
doi:10.1002/mmce.22181

6. Vetury, R., A. S. Kochhar, and J. B. Shealy, "XBAW, an enabling technology for next generation resonators and filter solutions for 5G and Wi-Fi6/6E/7 applications (Invited)," 2022 International Electron Devices Meeting (IEDM), 6.1.1-16.1.4, 2022.

7. Tag, A., M. Schaefer, J. Sadhu, A. Tajic, et al. "Next generation of BAW: The new benchmark for RF acoustic technologies," 2022 IEEE International Ultrasonics Symposium (IUS), 1-4, 2022.

8. Luo, Z., A. Zhang, W. Huang, S. Shao, et al. "Aluminum nitride thin film based reconfigurable integrated photonic devices," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 29, No. 3, 1-19, 2023.

9. Qamar, A. and M. Rais-Zadeh, "Coupled BAW/SAW resonators using AlN/Mo/Si and AlN/Mo/GaN layered structures," IEEE Electron Device Letters, Vol. 40, No. 2, 321-324, 2019.
doi:10.1109/LED.2018.2890755

10. Marin, S., J. D. Martinez, C. I. Valero, et al. "Microstrip filters with enhanced stopband based on lumped bisected pi-sections with parasitics," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 1, 19-21, 2017.
doi:10.1109/LMWC.2016.2630841

11. Xiang, K. R. and F. C. Chen, "Compact microstrip bandpass filter with multispurious suppression using quarter-wavelength and half-wavelength uniform impedance resonators," IEEE Access, Vol. 6, 20364-20370, 2018.
doi:10.1109/ACCESS.2018.2822262

12. Ali, N. O., M. R. Hamid, M. K. A. Rahim, et al. "A compact second-order Chebyshev bandpass filter using U-shaped resonator and defected ground structure," Radioengineering, Vol. 29, No. 2, 321-327, 2020.
doi:10.13164/re.2020.0321

13. Liu, L. Q., P. Zhang, M. H. Weng, et al. "A miniaturized wideband bandpass filter using quarter-wavelength stepped-impedance resonators," Electronics, Vol. 8, No. 12, 1540, 2019.
doi:10.3390/electronics8121540

14. Saleh, S., W. Ismail, M. H. Jamaluddin, et al. "5G hairpin bandpass filter," Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 7, No. 1, 1-12, 2021.

15. Wan, F., L. Wu, B. Ravelo, et al. "Analysis of interconnect line coupled with a radial-stub terminated negative group delay circuit," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 1813-1821, 2020.
doi:10.1109/TEMC.2019.2936266