Vol. 118
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-08-05
Highly-Selective Ridge Gap Waveguide Based Filters for Multi-Band Satellite Applications
By
Progress In Electromagnetics Research M, Vol. 118, 105-116, 2023
Abstract
In this paper, a pioneering and innovative approach for multiple-band ridge gap waveguide (MB-RGW) based narrowband bandpass filter for satellite applications is presented. The MB-RGW represents a significant and emerging technological advancement within the domain of microwave and millimeter-wave engineering. It comprises a periodic structure that enables the propagation of electromagnetic waves along its axis. We have provided a detailed analysis of the MB-RGW, which includes its design, simulation, and experimental results. A prototype filter, designed according to specifications, was successfully produced with a fabricated circuit area measuring 42.25 mm × 76.25 mm × 8.8 mm. We demonstrate that the MB-RGW can achieve multiple bands with a single structure, making it a versatile and efficient device for a wide range of applications. We also present a detailed analysis of the factors that affect the performance of the MB-RGW, including the geometry of the ridge and the spacing between ridges. Our experimental results show that the MB-RGW can achieve high levels of attenuation and isolation, making it a promising candidate for use in microwave and millimeter-wave circuits and systems. The experimental results show S11 smaller than -20 dB over relative bandwidths, and S21 has a maximum of -0.6 dB. The proposed filter demonstrates four resonances at frequencies of 10.6 GHz, 12.6 GHz, 14.7 GHz, and 17.1 GHz, catering to mobile and fixed radio locations as well as satellite applications. It exhibits a fractional bandwidth of 0.44% at 3 dB in the X-Band and approximately 0.57% to 0.61% at 3 dB bandwidth in the Ku-band. The filter offers a compact, cost-effective, and easily implementable solution for satellite communication systems, including space operations, earth exploration, satellite TV broadcasting, and fixed satellite services (FSS). Overall, this paper provides a comprehensive overview of the MB-RGW and its potential for the use in a range of applications.
Citation
Neetirajsinh Jaydeepsinh Chhasatia, Jitendra P. Chaudhari, and Amit V. Patel, "Highly-Selective Ridge Gap Waveguide Based Filters for Multi-Band Satellite Applications," Progress In Electromagnetics Research M, Vol. 118, 105-116, 2023.
doi:10.2528/PIERM23063001
References

1. Shi, Y. and H. J. Wang, "Dual-ridge gap waveguide-based antenna with diverse beam capabilities," IEEE Open Journal of Antennas and Propagation, Vol. 3, 774-782, 2022, doi: 10.1109/OJAP.2022.3190225.
doi:10.1109/OJAP.2022.3190225

2. Chhasatia, N., J. Chaudhari, and A. Patel, "Ridge gap waveguide based band pass filter for Ku-band application," IOP Conference Series: Materials Science and Engineering, Vol. 120, No. 1, 012011, 2021, doi: 10.1088/1757-899X/1206/1/012011.
doi:10.1088/1757-899X/1206/1/012011

3. Pizarro, F., C. Sanchez-Cabello, J. L. Vazquez-Roy, and E. Rajo-Iglesias, "Considerations of impedance sensitivity and losses in designing inverted microstrip gap waveguides," AEU Int. J. Electron. Commun., Vol. 124, 153353, 2020.
doi:10.1016/j.aeue.2020.153353

4. Huang, H., Y. Wu, W. Wang, W. Feng, and Y. Shi, "Analysis of the propagation constant of a ridge gap waveguide and its application of dual-band unequal couplers," IEEE Transactions on Plasma Science, Vol. 48, No. 12, 4163-4170, Dec. 2020, doi: 10.1109/TPS.2020.3034669.
doi:10.1109/TPS.2020.3034669

5. Thaher, R. H. and S. H. M. jassim, "Design of dual band elliptical microstrip antenna for satellite communication," IOP Conference Series: Materials Science and Engineering, Vol. 928, 022066, 2020.
doi:10.1088/1757-899X/928/2/022066

6. Zhang, T., L. Chen, S. M. Moghaddam, A. Uz Zaman, and J. Yang, "Wideband dual-polarized array antenna on dielectric-based inverted microstrip gap waveguide," Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-3, Krakow, Poland, March 31-April 5, 2019.

7. Birgermajer, S., N. Janković, V. Crnojevic-Bengin, and V. Radonić, "Millimeter-wave dual-mode filters realized in microstrip-ridge gap waveguide technology," J. Infrared Millim. Terahertz Waves, Vol. 40, 92-107, 2019.
doi:10.1007/s10762-018-0550-y

8. Wu, T., T. Zhang, and J. Huang, "Design of Ku-band size-reduced waveguide slot filter antenna loaded with metal ridges," Journal of Physics: Conference Series, Vol. 1325, No. 1, 012199, 2019, doi: 10.1088/1742-6596/1325/1/012199.
doi:10.1088/1742-6596/1325/1/012199

9. Ali, M. M., S. I. Shams, and A. R. Sebak, "Low loss and ultra flat rectangular waveguide harmonic coupler," IEEE Access, Vol. 6, 38736-38744, 2018.
doi:10.1109/ACCESS.2018.2854189

10. Liu, J., J. Yang, and A. U. Zaman, "Study of dielectric loss and conductor loss among microstrip, covered microstrip and inverted microstrip gap waveguide utilizing variational method in millimeter waves," Proceedings of the 2018 International Symposium on Antennas and Propagation (ISAP), 1-2, Busan, Korea, October 23-26, 2018.

11. Rajo-Iglesias, E., M. Ferrando-Rocher, and A. U. Zaman, "Gap waveguide technology for millimeter-wave antenna systems," IEEE Commun. Mag., Vol. 56, 14-20, 2018.
doi:10.1109/MCOM.2018.1700998

12. Afolayan, B. O., T. J. Afullo, and A. Alonge, "Subtropical rain attenuation statistics on 12.6 GHz Ku-band satellite link using synthetic storm technique," SAIEE Africa Research Journal, Vol. 109, No. 4, 230-236, Dec. 2018, doi: 10.23919/SAIEE.2018.8538336.
doi:10.23919/SAIEE.2018.8538336

13. Muchhal, N., A. Chakraborty, M. Vishwakarma, and S. Srivastava, "Slotted folded substrate integrated waveguide band pass filter with enhanced bandwidth for Ku/k band applications," Progress In Electromagnetics Research M, Vol. 70, 51-60, 2018, doi: 10.2528/PIERM18041804.
doi:10.2528/PIERM18041804

14. Liu, J., A. Vosoogh, A. U. Zaman, and J. Yang, "Design and fabrication of a high-gain 60-GHz cavity-backed slot antenna array fed by inverted microstrip gap waveguide," IEEE Trans. Antennas Propag., Vol. 65, 2117-2122, 2017.
doi:10.1109/TAP.2017.2670509

15. Shams, S. I. and A. A. Kishk, "Design of 3-dB hybrid coupler based on RGW technology," IEEE Trans. Microw. Theory. Tech., Vol. 65, 3849-3855, October 2017.

16. Kandonmez, S, O. Kolancioglu, D. H. Boyaci, M. E. Koca, and T. Imeci, "High gain perturbed pentagonal shaped diamond slotted patch antenna at 17.1 GHz," 2017 International Applied Computational Electromagnetics Society Symposium --- Italy (ACES), 1-2, Firenze, Italy, 2017.

17. Rajo-Iglesias, E. and A. A. Brazález, "5G antenna in inverted microstrip gap waveguide technology including a transition to microstrip," Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), 1042-1043, Okinawa, Japan, October 24-28, 2016.

18. Kuralay, E. N., E. F. Uzun, O. Ates, Y. M. Sahin, and T. Imeci, "Perturbed hexagonal antenna at 14.7 GHz," 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electr, 1-2, Honolulu, HI, USA, 2016.

19. Huang, F., J. Zhou, and W. Hong, "Ku band continuously tunable circular cavity SIW filter with one parameter," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 4, 270-272, April 2016, doi: 10.1109/LMWC.2016.2537785.
doi:10.1109/LMWC.2016.2537785

20. Patel, A., Y. Kosta, A. Vala, and R. Gosai, "Design and performance analysis of metallic posts coupled SIW-based multiband bandpass and bandstop filter," Microwave and Optical Technology Letters, Vol. 57, 1-5, 2015, doi: 10.1002/mop.29105.

21. Rhbanou, A., S. Mohamed, and S. Bri, "Design of K-band substrate integrated waveguide band-pass filter with high rejection," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 14, 155-169, 2015, doi: 10.1590/2179-10742015v14i2473.
doi:10.1590/2179-10742015v14i2473

22. Brazález, A. A., E. Rajo-Iglesias, J. L. Vázquez-Roy, A. Vosoogh, and P. Kildal, "Design and validation of microstrip gap waveguides and their transitions to rectangular waveguide, for millimeter-wave applications," IEEE Trans. Microw. Theory Technology, Vol. 63, 4035-4050, 2015.
doi:10.1109/TMTT.2015.2495141

23. Sanchez-Cabello, C. and E. Rajo-Iglesias, "Optimized self-diplexed antenna in gap waveguide technology," Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 460-461, Vancouver, BC, Canada, July 19-24, 2015.

24. Pucci, E., "Gap waveguide technology for millimeter wave applications and integration with antennas,", Ph.D. dissertation, 2013.

25. Kildal, P., A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, and A. Valero-Nogueira, "Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression," IET Microw. Antennas Propag., Vol. 5, 262-270, 2011.
doi:10.1049/iet-map.2010.0089

26. Alfonso, E. and et al, "New waveguide technology for antennas and circuits," Waves Year, Vol. 3, 65-75, 2011.

27. Rajo-Iglesias, E., A. U. Zaman, and P. Kildal, "Parallel plate cavity mode suppression in microstrip circuit packages using a lid of nails," IEEE Microw. Wirel. Components Lett., Vol. 20, 31-33, 2010.
doi:10.1109/LMWC.2009.2035960

28. Zhang, Q., Y. Dong, and J. Cao, "Dual-mode bandpass filter using microstrip SIR at Ka band," Proceedings of the 2009 Asia Pacific Microwave Conference, 1401-1404, Singapore, December 7-10, 2009.

29. Kildal, P. S., E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, "Local metamaterials-based waveguides in gaps between parallel metal plates," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 84-87, 2009.
doi:10.1109/LAWP.2008.2011147

30. Kildal, P. S., "Three metamaterials-based gap waveguides between parallel metal plates for mm/submm waves," Proceedings of the Third European Conference on Antennas and Propagation, EuCAP, 28-32, 2009.

31. Sievenpiper, D., "High-impedance electromagnetic surfaces,", Ph.D. dissertation, 1999.