Vol. 117
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-23
Exploring Interferences Arising in the Construction of GPR Responses from an Object Buried Between Two Rough Surfaces by GPILE Method
By
Progress In Electromagnetics Research Letters, Vol. 117, 13-19, 2024
Abstract
In this paper, we explore interferences arising in the electromagnetic scattering by an object buried inside a layer with two rough interfaces by using the GPILE method. We show that there are two categories of interferences in the echoes that make up GPILE: the interferences that are present whatever the chosen scenario and those that come from the geometry of the problem (distance between the three scatterers). In this last category, we can cite for example the interferences which come from the position of the object, more precisely from its depth, because an object closer to one of the surfaces would produce echoes which arrive almost at the same time as those of the nearby interface.
Citation
Marc Songolo, Nicolas Pinel, and Christophe Bourlier, "Exploring Interferences Arising in the Construction of GPR Responses from an Object Buried Between Two Rough Surfaces by GPILE Method," Progress In Electromagnetics Research Letters, Vol. 117, 13-19, 2024.
doi:10.2528/PIERL23062903
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving maxwells equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. AP14, No. 3, 302-307, 1966.

2. Giannopoulos, A., "Modelling ground penetrating radar by GprMax," Construction and Building Materials, Vol. 19, No. 10, 755-762, Dec. 2005.
doi:10.1016/j.conbuildmat.2005.06.007

3. Déchamps, N, N de Beaucoudrey, C Bourlier, and S Toutain, "Fast numerical method for electromagnetic scattering by rough layered interfaces: propagation-inside-layer expansion method," Journal of The Optical Society of America A-optics Image Science and Vision, Vol. 23, No. 2, 359-369, Feb. 2006.
doi:10.1364/JOSAA.23.000359

4. Kubické, G., C. Bourlier, and J. Saillard, "Scattering by an object above a randomly rough surface from a fast numerical method: Extended pile method combined with FB-SA," Waves in Random and Complex Media, Vol. 18, No. 3, 495-519, 2008.
doi:10.1080/17455030802087057

5. El-Shenawee, M, "Scattering from multiple objects buried beneath two-dimensional random rough surface using the steepest descent fast multipole method," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 4, 802-809, Apr. 2003.
doi:10.1109/TAP.2003.811096

6. El-Shenawee, M and C Rappaport, "Electromagnetic scattering interference between two shallow objects buried under 2-D random rough surfaces," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 6, 223-225, Jun. 2003.
doi:10.1109/LMWC.2003.814092

7. El-Shenawee, M, "Polarimetric scattering from two-layered two-dimensional random rough surfaces with and without buried objects," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 1, 67-76, Jan. 2004.
doi:10.1109/TGRS.2003.815675

8. Liang, Yu, Lixin Guo, and Zhensen Wu, "The EPILE combined with the generalized-FBM for analyzing the scattering from targets above and on a rough surface," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 809-813, 2010.
doi:10.1109/LAWP.2010.2068270

9. Guo, Lixin, Yu Liang, and Zhensen Wu, "A study of electromagnetic scattering from conducting targets above and below the dielectric rough surface," Optics Express, Vol. 19, No. 7, 5785-5801, Mar. 2011.
doi:10.1364/OE.19.005785

10. Liang, Yu, Li-Xin Guo, and Zhen-Sen Wu, "The fast EPILE combined with FBM for electromagnetic scattering from dielectric targets above and below the dielectric rough surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 10, 2, 3892-3905, Oct. 2011.
doi:10.1109/TGRS.2011.2139219

11. Bourlier, Christophe, Cedric Le Bastard, and Vincent Baltazart, "Generalization of pile method to the EM scattering from stratified subsurface with rough interlayers: application to the detection of debondings within pavement structure," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 7, 4104-4115, Jul. 2015.
doi:10.1109/TGRS.2015.2390677

12. Songolo, M., N. Pinel, and C. Bourlier, "Full wave modeling of electromagnetic scattering by an object buried between two rough surfaces: application to GPR," Progress In Electromagnetics Research B, Vol. 96, 133-152, Sep. 2022.
doi:10.2528/PIERB22020807

13. Songolo, M., N. Pinel, and C. Bourlier, "Rigorous numerical method for electromagnetic scattering by an object buried between two rough surfaces," 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 3522-3525, 2021.