Vol. 119
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-09-14
Star Shaped Fractal Conformal MIMO Antenna for WLAN, Vehicular and Satellite Applications
By
Progress In Electromagnetics Research M, Vol. 119, 37-50, 2023
Abstract
A compact and novel star shaped fractal microstrip patch conformal MIMO antenna suitable for WLAN, vehicular communications (5.855-5.925 GHz) and Fixed Satellite Services (FSS) applications is proposed in this paper. Analysis of planar and conformal single element and four element MIMO antennas is presented. Proposed star shaped fractal MIMO antenna is prototyped on Polyamide substrate of geometry 104 x 30 x 0.4 mm3. It achieved an impedance bandwidth (S11 < -10 dB) of 3.7 GHz operating from 4.53-7.86 GHz. Radiation patterns and surface current distribution are investigated at 5.9 GHz and 7.3 GHz center frequencies. A peak gain of 5.42 dB and 4.86 dB are obtained at 5.9 GHz and 7.3 GHz respectively. Radiation efficiency is more than 98% and MIMO performance parameters are also analyzed. Proposed conformal MIMO antenna showsfine diversity performance for WLAN, vehicular and FSS communications.
Citation
Chiranjeevi Reddy Sereddy, and Yalavarthi Usha Devi, "Star Shaped Fractal Conformal MIMO Antenna for WLAN, Vehicular and Satellite Applications," Progress In Electromagnetics Research M, Vol. 119, 37-50, 2023.
doi:10.2528/PIERM23062301
References

1. Rahim, A., P. K. Malik, and V. A. Sankar Ponnapalli, "State of the art: A review on vehicular communications, impact of 5G, fractal antennas for future communication," Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019). Lecture Notes in Networks and Systems, P. Singh, W. Paw lowski, S. Tanwar, N. Kumar, J. Rodrigues, M. Obaidat, eds., Vol. 121, Springer, Singapore, 2020.

2. Liu, W.-C., C.-M. Wu, and N.-C. Chu, "A compact low-profile dual-band antenna for WLAN and WAVE applications," AEU --- International Journal of Electronics and Communications, Vol. 66, No. 6, 467-471, Elsevier BV, Jun. 2012.
doi:10.1016/j.aeue.2011.10.009

3. Madhav, B. T. P., T. Anilkumar, and S. K. Kotamraju, "Transparent and conformal wheel-shaped fractal antenna for vehicular communication applications," AEU --- International Journal of Electronics and Communications, Vol. 91, 1-10, Elsevier BV, Jul. 2018.

4. Madhav, B. T. P. and T. Anilkumar, "Design and study of multiband planar wheel-like fractal antenna for vehicular communication applications," Microwave and Optical Technology Letters, Vol. 60, No. 8, 1985-1993, Wiley, Jun. 2018.
doi:10.1002/mop.31290

5. Joshi, M. P. and V. J. Gond, "Design and analysis of microstrip patch antenna for WLAN and vehicular communication," Progress In Electromagnetics Research C, Vol. 97, 163-176, 2019.
doi:10.2528/PIERC19090201

6. Rao, M. V., B. T. P. Madhav, A. Tirunagari, and B. P. Nadh, "Circularly polarized flexible antenna on liquid crystal polymer substrate material with metamaterial loading," Microwave and Optical Technology Letters, Vol. 62, No. 2, 866-874, Wiley, Oct. 2019.

7. Trujillo-Flores, J. I., R. Torrealba-Melendez, J. M. Munoz-Pacheco, M. A. Vasquez-Agustin, E. I. Tamariz-Flores, E. Colin-Beltran, and M. Lopez-Lopez, "CPW-fed transparent antenna for vehicle communications," Applied Sciences, Vol. 10, No. 17, 6001, MD, MDPI AG, Aug. 2020.
doi:10.3390/app10176001

8. Maddio, S., G. Pelosi, M. Righini, and S. Selleri, "A slotted patch antenna with enhanced gain pattern for automotive applications," Progress In Electromagnetics Research Letters, Vol. 95, 135-141, 2021.
doi:10.2528/PIERL20110103

9. Chletsou, A., J. F. Locke, and J. Papapolymerou, "Vehicle platform effects on performance of flexble, lightweight, and dual-band antenna for vehicular communications," IEEE Journal of Microwaves, Vol. 2, No. 1, 123-133, Institute of Electrical and Electronics Engineers (IEEE), Jan. 2022.
doi:10.1109/JMW.2021.3131844

10. Kapoor, A., P. Kumar, and R. Mishra, "High gain modified vivaldi vehicular antenna for IoV communications in 5G network," Heliyon, Vol. 8, No. 5, e09336, Elsevier BV, May 2022.
doi:10.1016/j.heliyon.2022.e09336

11. Virothu, S. and M. S. Anuradha, "Flexible CP diversity antenna for 5G cellular vehicle-to-everything applications," AEU --- International Journal of Electronics and Communications, Vol. 152, 154248, Elsevier BV, Jul. 2022.

12. Yacoub, A. M., M. O. Khalifa, and D. N. Aloi, "Wide band raised printed monopole for automotive 5G wireless communications," IEEE Open Journal of Antennas and Propagation, Vol. 3, 502-510, Institute of Electrical and Electronics Engineers (IEEE), 2022.

13. Dong, S. W., "A triple band C-shape monopole antenna for vehicle communication application," Progress In Electromagnetics Research C, Vol. 121, 97-106, 2022.

14. Alsath, M. G. N. and M. Kanagasabai, "Compact UWB monopole antenna for automotive communications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4204-4208, Institute of Electrical and Electronics Engineers (IEEE), Sept. 2015.
doi:10.1109/TAP.2015.2447006

15. Varum, T., J. Matos, P. Pinho, R. Abreu, A. Oliveira, and J. Lopes, "Microstrip antenna array for multiband dedicated short range communication systems," Microwave and Optical Technology Letters, Vol. 53, No. 12, 2794-2796, Wiley, Sept. 2011.
doi:10.1002/mop.26394

16. Kishore, N., G. Upadhyay, V. S. Tripathi, and A. Prakash, "Dual band rectangular patch antenna array with defected ground structure for ITS application," AEU --- International Journal of Electronics and Communications, Vol. 96, 228-237, Elsevier BV, Nov. 2018.

17. Venkateswara Rao, M., B. T. P. Madhav, et al. "CSRR-loaded T-shaped MIMO antenna for 5G cellular networks and vehicular communications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 8, Wiley, Apr. 2019.

18. Bactavatchalame, P. and K. Rajakani, "Compact broadband slot-based MIMO antenna array for vehicular environment," Microwave and Optical Technology Letters, Vol. 62, No. 5, 2024-2032, Wiley, May 2020.
doi:10.1002/mop.32261

19. Wang, W., Z. Zhao, Q. Sun, X. Liao, Z. Fang, et al. "Compact quad-element vertically-polarized high-isolation wideband MIMO antenna for vehicular base station," IEEE Transactions on Vehicular Technology, Vol. 69, No. 9, 10000-10008, Institute of Electrical and Electronics Engineers (IEEE), Sept. 2020.
doi:10.1109/TVT.2020.3004647

20. Potti, D., Y. Tusharika, M. G. N. Alsath, S. Kirubaveni, et al. "A novel optically transparent UWB antenna for automotive MIMO communications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 7, 3821-3828, Institute of Electrical and Electronics Engineers (IEEE), Jul. 2021.
doi:10.1109/TAP.2020.3044383

21. Virothu, S. and M. S. Anuradha, "Conformal MIMO circular polarization diversity antenna for V2X applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 4, Wiley, Dec. 2021.

22. Desai, A., M. Palandoken, J. Kulkarni, G. Byun, and T. K. Nguyen, "Wideband flexible/transparent connected-ground MIMO antennas for sub-6 GHz 5G and WLAN applications," IEEE Access, Vol. 9, 147003-147015, 2021.
doi:10.1109/ACCESS.2021.3123366

23. Kulkarni, N. P., N. B. Bahadure, P. D. Patil, and J. S. Kulkarni, "Flexible interconnected 4-port MIMO antenna for sub-6 GHz 5G and X band applications," AEU --- International Journal of Electronics and Communications, Vol. 152, 154243, 2022.
doi:10.1016/j.aeue.2022.154243

24. Saritha, V. and C. Chandrasekhar, "A conformal multi-band MIMO antenna for vehicular communications," Progress In Electromagnetics Research Letters, Vol. 108, 49-57, 2023.
doi:10.2528/PIERL22090507