Vol. 111
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-07-26
A Compact Tunable Microstrip Bandpass Filter with Tuning Range and Bandwidth Enhanacement
By
Progress In Electromagnetics Research Letters, Vol. 111, 103-110, 2023
Abstract
This letter presents a compact constant absolute bandwidth (ABW) frequency tunable bandpass filter (BPF) with bandwidth and tuning range enhancement. The fundamental structure consists of two varactor-loaded step-impedance resonators (SIRs) and input/output feeding lines. By adjusting the position of varactors, the slope of coupling coefficient between the two resonators can bechanged easily, which is crucial to realizing constant ABW. The tuning range is improved due to the application of varactor-loaded SIR. To expand the bandwidth, interdigital coupling structures between varactor-loaded SIRs are adopted. Besides, source-load coupling is introduced, and two transmission zeroes (TZs) are generated on both sides of the passband to enhance the rejection level of stopband. The measured results show that the proposed BPF achieves a center frequency tuning range from 0.79 to 1.2 GHz (41.2%), and the 3-dB ABW remains 108 ± 5 MHz. The insertion loss (IL) is 1.8-2.2 dB, and the return loss is greater than 10 dB during the whole tuning range.
Citation
Shuang Li, Shengxian Li, Jun Liu, and Neng Zhang, "A Compact Tunable Microstrip Bandpass Filter with Tuning Range and Bandwidth Enhanacement," Progress In Electromagnetics Research Letters, Vol. 111, 103-110, 2023.
doi:10.2528/PIERL23061902
References

1. Islam, H., S. Das, T. Bose, and T. Ali, "Diode based reconfigurable microwave filters for cognitive radio applications: A review," IEEE Access, Vol. 8, 185429-185444, 2020.
doi:10.1109/ACCESS.2020.3030020

2. Gao, L., T.-W. Lin, and G. M. Rebeiz, "Design of tunable multi-pole multi-zero bandpass filters and diplexer with high selectivity and isolation," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 66, No. 10, 3831-3842, Oct. 2019.
doi:10.1109/TCSI.2019.2914170

3. Gao, L. and G. M. Rebeiz, "A 0.97{1.53-GHz tunable four-pole bandpass filter with four transmission zeroes," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 3, 195-197, Mar. 2019.
doi:10.1109/LMWC.2019.2895558

4. Chen, Z. H. and Q. X. Chu, "Wideband fully tunable bandpass filter based on flexibly multi-mode tuning," IEEE Microwave & Wireless Components Letters, Vol. 26, No. 10, 789-791, 2016.
doi:10.1109/LMWC.2016.2601280

5. You, B., L. Chen, Y. Liang, and X.Wen, "A high-selectivity tunable dual-band bandpass filter using stub-loaded stepped-impedance resonators," IEEE Microwave & Wireless Components Letters, Vol. 24, No. 11, 736-738, 2014.
doi:10.1109/LMWC.2014.2348322

6. Abdelfattah, M., R. Zhang, and D. Peroulis, "High-selectivity tunable filters with dual-mode SIW resonators in an L-shaped coupling scheme," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 12, 5016-5028, Dec. 2019.
doi:10.1109/TMTT.2019.2944365

7. Ohira, M., S. Hashimoto, Z. Ma, and X. Wang, "Coupling-matrix-based systematic design of single-DC-bias-controlled microstrip higher order tunable bandpass filters with constant absolute bandwidth and transmission zeros," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 1, 118-128, Jan. 2019.
doi:10.1109/TMTT.2018.2873366

8. Zhang, Y.-J., J. Cai, and J.-X. Chen, "Design of novel reconfigurable filter with simultaneously tunable and switchable passband," IEEE Access, Vol. 7, 59708-59715, 2019.
doi:10.1109/ACCESS.2019.2915092

9. Kumar, N., S. Narayana, and Y. K. Singh, "Constant absolute bandwidth tunable symmetric and asymmetric bandpass responses based on reconfigurable transmission zeros and bandwidth," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 3, 1014-1018, Mar. 2022.
doi:10.1109/TCSII.2021.3125575

10. Wünsche, R., R. Collmann, M. Krondorf, and J. Forster, "Microstrip combline bandpass filter with tuning range enhancement and bandwidth tunability using resonator loaded series varactor and SLR," 2022 14th German Microwave Conference (GeMiC), 148-151, Ulm, Germany, 2022.

1. Hong, J.-S. and M. J. Lancaster, Microstrip Filter for RF/Microwave Application, Wiley, New York, NY, USA, 2001.
doi:10.1002/0471221619

12. Liu, Y., L. Liu, C. Liang, and I. Majid, "Compact planar tunable filter with constant absolute bandwidth and wide-frequency tuning range using DGS coupling structure," IEEE Access, Vol. 9, 157259-157266, 2021.
doi:10.1109/ACCESS.2021.3124218

13. Dyussembayev, A. and D. Psychogiou, "Continuously tunable 3-D printed helical resonators and bandpass filters using actuated liquid metals," IEEE Microwave and Wireless Components Letters, Vol. 32, No. 7, 855-858, Jul. 2022.
doi:10.1109/LMWC.2022.3152014

14. Lu, D., X. Tang, M. Li, and N. S. Barker, "Four-pole frequency agile bandpass filter with fully canonical response and constant ABW," IEEE MTT-S Int. Microw. Symp. Dig., 1-3, Chengdu, China, May 2018.

15. Li, S., S. Li, and J. Yuan, "A compact fourth-order tunable bandpass filter based on varactor-loaded step-impedance resonators," Electronics, Vol. 12, 2539, 2023.
doi:10.3390/electronics12112539

16. Xiang, Q., H. Sun, M. Fu, Q. Jin, and Q. Feng, "A 5th-order constant bandwidth tunable bandpass filter with two cascaded trisection structures," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 70, No. 1, 126-130, Jan. 2023.
doi:10.1109/TCSII.2022.3208601