Vol. 112
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-09-21
Metamaterial-Inspired Notebook Antenna with 2.4/5/6 GHz Wi-Fi 7 Operation
By
Progress In Electromagnetics Research Letters, Vol. 112, 87-95, 2023
Abstract
A metamaterial-inspired antenna is proposed that utilizes an artificial mu-negative (MNG) transmission line (TL) to incorporate the zeroth-order resonance (ZOR) into Wi-Fi 7 operation in the 2.4/5/6 GHz wireless local area network (WLAN) bands. The antenna comprises a meta-structured loop with periodically loaded series interdigital capacitors and a parasitic shorted strip, all formed on the same substrate layer in a coplanar structure. The 2.4 and 6 GHz bands are produced by the parasitic strip and the close-form loop strip, respectively, which are of typical right-handed antennas. The 5 GHz band caused by the ZOR mode, where the permeability is zero, can be adjusted by the series capacitance in the unit cell. The total antenna size is 5.4 mm × 19.6 mm only. In this work, the design applied to notebook computers for the upcoming Wi-Fi 7 operation is also demonstrated. Both numerical and experimental results validate our proof-of-concept design.
Citation
Saou-Wen Su, and Muhammad Idrees Magray, "Metamaterial-Inspired Notebook Antenna with 2.4/5/6 GHz Wi-Fi 7 Operation," Progress In Electromagnetics Research Letters, Vol. 112, 87-95, 2023.
doi:10.2528/PIERL23061204
References

1. Federal Communications Commission "FCC opens 6 GHz band to Wi-Fi and other unlicensed uses,", https://www.fcc.gov/document/fcc-opens-6-ghz-band-wi-fi-and-other-unlicensed-uses-0.

2. Lee, C. T., C. C. Wan, and S. W. Su, "Multi-laptop-antenna designs for 2.4/5/6 GHz WLAN and 5G NR77/78/79 operation," Proc. Int. Symposium on Antennas and Propagat., 421-422, Osaka, Japan, 2020.

3. Su, S. W., D. P. Yusuf, and F. H. Chu, "Conjoined, Wi-Fi 6E MIMO antennas for laptops," Proc. Int. Symposium on Antennas and Propagat., 1-2, Taipei, Taiwan, 2021.

4. Su, S. W. and C. C. Wan, "Asymmetrical, self-isolated laptop antenna in the 2.4/5/6 GHz Wi-Fi 6E bands," Proc. Int. Symposium on Antennas and Propagat., 1-2, Taipei, Taiwan, 2021.

5. Su, S. W., "Compact, small, chip-inductor-loaded Wi-Fi 6E monopole antenna," Proc. IEEE Int. Symposium on Antennas Propagat., 937-938, Singapore, 2021.

6. Sim, C. Y. D., et al., "A PIFA design with WLAN and Wi-Fi 6E band for laptop computer applications," Proc. IEEE Int. Symposium on Antennas Propagat., 1808-1809, Denvor, USA, 2022.

7. Su, S. W., "Miniaturized, Wi-Fi 6E notebook antenna using an in-series chip inductor," IEEE Int. Workshop on Electromagnetics, 168-169, Chiba, Japan, 2022.

8. Yusuf, D. P., F. H. Chu, and S. W. Su, "Ultra-wideband Wi-Fi 6E/5G NR antenna for laptop applications," Asia-Pacific Microw. Conf., 548-550, Yokohama, Japan, 2022.
doi:10.1109/LAWP.2022.3202697

9. Sim, C. Y. D., J. Kulkarni, S. H. Wang, S. Y. Zheng, Z. H. Lin, and S. C. Chen, "Low-profile laptop antenna design for Wi-Fi 6E band," IEEE Antennas Wireless Propagat. Lett., Vol. 22, 79-83, 2023.

10. Magray, M. I., S. W. Su, and D. P. Yusuf, "Electrically small, conformal Wi-Fi 6E antenna for compact laptop devices," Arabian J. Sci. Eng., 1-7, 2023.
doi:10.1155/2022/4553924

11. Su, S. W., P. H. Juan, and F. S. Chang, "Conjoined, two-monopole antenna pair with decoupling inductor for Wi-Fi 6E notebook applications," Int. J. Antennas Propagat., Vol. 22, 1-8, 2022.
doi:10.2528/PIERL22080402

12. Su, S. W. and P. H. Juan, "Miniaturized antenna pair for 2.4/5/6 GHz Wi-Fi 6E operation," Progress In Electromagnetics Research Letters, Vol. 107, 39-47, 2022.
doi:10.1109/LAWP.2023.3281457

13. Juan, P. H. and S. W. Su, "EMC hybrid loop/monopole LDS antenna with three-sided ground walls for 2.4/5/6 GHz WLAN operation," IEEE Antennas Wireless Propagat. Lett., Vol. 22, 1-5, 2023, early access.
doi:10.1109/MCOM.001.2000711

14. Garcia-Rodriguez, A., D. Lopez-Perez, L. Galati-Giordano, and G. Geraci, "IEEE 802.11be: Wi-Fi 7 strikes back," IEEE Comm. Mag., Vol. 21, 102-108, 2021.

15. Sanada, A., C. Caloz, and T. Itoh, "Novel zeroth-order resonance in composite right/left-handed transmission line resonators," Asia-Pacific Microw. Conf., 1588-1591, Seoul, South Korea, 2003.

16. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, 2006.
doi:10.1109/TAP.2007.891845

17. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propagat., Vol. 55, 868-876, 2007.
doi:10.1109/TAP.2007.910505

18. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. Antennas Propagat., Vol. 55, 3710-3712, 2007.
doi:10.1109/TAP.2010.2046832

19. Park, J.-H., Y.-H. Ryu, and J.-H. Lee, "Mu-zero resonance antenna," IEEE Trans. Antennas Propagat., Vol. 58, 1865-1875, 2010.
doi:10.1109/TAP.2012.2194643

20. Wei, K., Z. Zhang, Z. Feng, and M. F. Iskander, "A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns," IEEE Trans. Antennas Propagat., Vol. 60, 2702-2710, 2012.
doi:10.1109/TAP.2013.2241717

21. Wei, K., Z. Zhang, Z. Feng, and M. F. Iskander, "A wideband MNG-TL dipole antenna with stable radiation patterns," IEEE Trans. Antennas Propagat., Vol. 61, 2418-2424, 2013.
doi:10.1109/ACCESS.2020.3013698

22. Alibakhshikenari, M., B. S. Virdee, L. Azpilicueta, et al. "A comprehensive survey of ``metamaterial transmission-line based antennas design challenges and applications"," IEEE Access, Vol. 8, 144778-144808, 2020.
doi:10.1109/MAP.2022.3201194

23. Zhang, J., S. Yan, and G. A. E. Vandenbosh, "Composite right/left-handed transmission line metamaterial-inspired small antenna design: Topologies, reconfigurability, and applications," IEEE Antennas Propagat. Mag., Vol. 65, 71-78, 2023.

24. Bertin, G., B. Piovano, and R. Vallauri, "Metamaterial-inspired antennas for telecommunication applications," European Conf. Antennas Propagat. (EuCAP), 1-2, Prague, Czech Republic, 2012.

25. Suhas, D. and S. Bhattacharyya, "Compact dual-band CRLH metamaterial planar antenna in laptops for WLAN/WiMAX frequencies," IEEE Microw. Antennas Propagat. Conf. (MAPCON), 1037-1042, Bangalore, India, 2022.

26. Ansys HFSS, Ansys Inc., http://www.ansys.com/Products/Electronics/ANSYS-FSS.

27. SG 24-S, MVG, https://www.mvg-world.com/en/products/antenna-measurement/multi-probe-systems/sg-24.

28. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, 2016.