Vol. 111
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-07-18
High Sensitivity Passive Wireless Humidity Sensor Based on Polyvinyl Alcohol
By
Progress In Electromagnetics Research Letters, Vol. 111, 93-102, 2023
Abstract
A low cost and compact chipless Radio Frequency Identification (RFID) humidity sensor with the size of 18 * 18 * 0.5 mm3 is designed for environmental humidity monitor. The sensor consists of a circular resonator and a rectangular substrate, which utilizes the polyvinyl alcohol (PVA) humidity sensitive material for relative humidity (RH) sensing. The PVA humidity sensitive material covers the sensor surface. The working principle of the sensor is that the change of environmental humidity results in the changing of dielectric constant of PVA and thus shifting of the resonant frequency of the sensor. The real-time humidity can be observed by monitoring the resonant frequency. The simulation results show that the humidity sensing range of the designed humidity sensor is 21.9% RH~52.5% RH, corresponding to the resonant frequency range of the sensor from 2.76 GHz to 2.51 GHz with the total offset 250 MHz. The maximum humidity sensitivity was 23.08 MHz/% RH within the monitoring range. The designed humidity sensor has the advantages of low cost, compact and simple structure, which is suitable for humidity monitoring in various complex environments.
Citation
Bo Wang, Fei Gao, Youwei Li, Ke Wang, and Shengli Cao, "High Sensitivity Passive Wireless Humidity Sensor Based on Polyvinyl Alcohol," Progress In Electromagnetics Research Letters, Vol. 111, 93-102, 2023.
doi:10.2528/PIERL23060605
References

1. Jeong, H., Y. Noh, and D. Lee, "Highly stable and sensitive resistive flexible humidity sensors by means of roll-to-roll printed electrodes and flower-like TiO2 nanostructures," Ceramics International, Vol. 45, No. 1, 985-992, 2019.
doi:10.1016/j.ceramint.2018.09.276

2. Bi, H., K. Yin, X. Xie, J. Ji, S.Wan, L. Sun, and M. S. Dresselhaus, "Ultrahigh humidity sensitivity of graphene oxide," Scientific Reports, Vol. 3, No. 1, 2714, 2013.
doi:10.1038/srep02714

3. Liu, J. H., L. D. Du, J. Jin, Z. Fang, and Z. Zhao, "Improvement of the microcapacitive humidity sensor by the package optimization," Micro & Nano Letters, Vol. 15, No. 3, 145-148, 2020.
doi:10.1049/mnl.2019.0422

4. Kim, J., J. H. Cho, H. M. Lee, and S. M. Hong, "Capacitive humidity sensor based on carbon black/polyimide composites," Sensors, Vol. 21, No. 6, 1947, 2021.
doi:10.3390/s21061947

5. Smith, A. D., K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, and M. C. Lemme, "Resistive graphene humidity sensors with rapid and direct electrical readout," Nanoscale, Vol. 7, No. 45, 19099-19109, 2015.
doi:10.1039/C5NR06038A

6. Packirisamy, M., I. Stiharu, X. Li, and G. Rinaldi, "A polyimide based resistive humidity sensor," Sensor Review, Vol. 25, No. 4, 271-276, 2005.
doi:10.1108/02602280510620123

7. Borgese, M., F. A. Dicandia, F. Costa, S. Genovesi, and G. Manara, "An inkjet printed chipless RFID sensor for wireless humidity monitoring," IEEE Sens. J., Vol. 17, No. 15, 4699-4707, 2017.
doi:10.1109/JSEN.2017.2712190

8. Abbasi, Z., M. Baghelani, and M. Daneshmand, "Zero power consumption chipless distant microwave moisture sensor for smart home applications," Proc. IEEE Sensors, 1-4, Montreal, Canada, October 2019.

9. Bagchi, S., A. Shakouri, R. Rahimi, N. Raghunathan, and J. F. Waimin, "Battery-less wireless chipless sensor tag for subsoil moisture monitoring," IEEE Sens. J., Vol. 21, No. 5, 6071-6082, 2020.

10. Yao, Y., H. Zhang, J. Sun, W. Y. Ma, L. Li, W. Z. Li, and J. Du, "Novel QCM humidity sensors using stacked black phosphorus nanosheets as sensing film," Sensors Actuat. B: Chem., Vol. 244, 259-264, 2017.
doi:10.1016/j.snb.2017.01.010

11. Lu, D., Y. Zheng, A. Penirschke, and R. Jakoby, "Humidity sensors based on photolithographically patterned PVA films deposited on SAW resonators," IEEE Sens. J., Vol. 16, No. 1, 13-14, 2015.
doi:10.1109/JSEN.2015.2468082

12. Zhang, Y., Y. Chen, Y. Zhang, H. Cong, B. Fu, S. Wen, and S. Ruan, "A novel humidity sensor based on NH2-MIL-125(Ti) metal organic framework with high responsiveness," J. Nanopart. Res., Vol. 15, 1-6, 2003.

13. Le, X. H., X. Y. Wang, J. T. Pang, Y. J. Liu, B. Fang, Z. Xu, C. Gao, Y. Xu, and J. Xie, "A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure," Sensors Actuat. B: Chem., Vol. 255, 2454-2461, 2018.
doi:10.1016/j.snb.2017.09.038

14. Cirmirakis, D., A. Demosthenous, N. Saeidi, and N. Donaldson, "Humidity-to-frequency sensor in CMOS technology with wireless readout," IEEE Sens. J., Vol. 13, No. 3, 900-908, 2012.
doi:10.1109/JSEN.2012.2217376

15. Tan, Z. C., R. Daamen, A. Humbert, Y. V. Ponomarev, Y. Chae, and M. A. P. Pertijs, "A 1.2-V 8.3-nJ CMOS humidity sensor for RFID applications," IEEE J. Solid-St. Circ., Vol. 48, No. 10, 2469-2477, 2013.
doi:10.1109/JSSC.2013.2275661

16. Deng, F. M., Y. G. He, C. L. Zhang, and W. Feng, "A CMOS humidity sensor for passive RFID sensing applications," Sensors, Vol. 14, No. 5, 8728-8739, 2014.
doi:10.3390/s140508728

17. Deng, F. M., Y. G. He, B. Li, Y. Song, and X. Wu, "Design of a slotted chipless RFID humidity sensor tag," Sensor Actuat. B-Chem., Vol. 264, 255-262, 2018.
doi:10.1016/j.snb.2018.02.153

18. Ali, A., S. I. Jafri, A. Habib, Y. Amin, and H. Tenhunen, "RFID humidity sensor tag for low-cost applications," Appl. Comput. Electrom. Society, Vol. 32, No. 12, 1083-1088, 2017.

19. Raju, R. and G. E. Bridges, "Radar cross section-based chipless tag with built-in reference for relative humidity monitoring of packaged food commodities," IEEE Sens. J., Vol. 21, No. 117, 18773-18780, 2021.
doi:10.1109/JSEN.2021.3090367

20. Komoda, N., T. Michisaka, and M. Kondo, "Novel sensing techniques of chipless RFID sensor for infrastructure," IEICE Commun. Expr., Vol. 9, No. 6, 244-249, 2020.
doi:10.1587/comex.2020XBL0014

21. Habib, A., R. Asif, M. Fawwad, Y. Amin, J. Loo, and H. Tenhunen, "Directly printable compact chipless RFID tag for humidity sensing," IEICE Electron. Expr., Vol. 14, No. 10, 20170169-20170169, 2017.
doi:10.1587/elex.14.20170169

22. Sumra, Z., H. Ayesha, S. J. Anum, A. Yasar, L. Jonathan, and T. Hannu, "Dual-polarized chipless humidity sensor tag," IEICE Electron. Expr., Vol. 14, No. 21, 20170926-20170926, 2017.
doi:10.1587/elex.14.20170926

23. Anum Satti, J., A. Habib, H. Anam, S. Zeb, Y. Amin, J. Loo, and H. Tenhunen, "Miniaturized humidity and temperature sensing RFID enabled tags," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, No. 1, e2115, 2017.

24. Feng, Y., L. Xie, Q. Chen, and L. R. Zheng, "Low-cost printed chipless RFID humidity sensor tag for intelligent packaging," IEEE Sens. J., Vol. 15, No. 6, 3201-3208, 2015.
doi:10.1109/JSEN.2014.2385154

25. Zeb, S., A. Habib, Y. Amin, H. Tenhunen, and J. Loo, "Green electronic based chipless humidity sensor for IoT applications," 2018 IEEE Green Technologies Conference, 172-175, Austin, USA, April 2018.

26. Xie, M. Z., L. F. Wang, L. Dong, W. J. Deng, and Q. A. Huang, "Low cost paper-based LC wireless humidity sensors and distance-insensitive readout system," IEEE Sens. J., Vol. 19, No. 12, 4717-4725, February 2019.
doi:10.1109/JSEN.2019.2901004

27. Gaspar, C., J. Olkkonen, S. Passoja, and M. Smolander, "Paper as active layer in inkjet-printed capacitive humidity sensors," Sensors, Vol. 17, No. 7, 1464, 2017.
doi:10.3390/s17071464

28. Barman, B., S. Bhaskar, and A. K. Singh, "Spiral resonator loaded S-shaped folded dipole dual band UHF RFID tag antenna," Microw. Opt. Technol. Lett., Vol. 61, No. 3, 720-726, 2019.
doi:10.1002/mop.31647

29. Athauda, T. and N. C. Karmakar, "The realization of chipless RFID resonator for multiple physical parameter sensing," IEEE Internet Things, Vol. 6, No. 3, 5387-5396, 2019.
doi:10.1109/JIOT.2019.2901470

30. Vena, A., E. Perret, and S. Tedjini, "High capaciy chipless RFID tag insensitive to the polarization," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 10, 4509-4515, 2012.

31. Dissanayake, T. and K. P. Esselle, "Prediction of the notch frequency of slot loaded printed UWB antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3320-3325, 2007.
doi:10.1109/TAP.2007.908792

32. Vena, A., E. Perret, and S. Tedjini, "Chipless RFID based on RF encoding particle: Realization, coding, reading system," Remote Identification beyond RFID Set, 171-180, ISTE Press, London, UK; Elsevier, London, UK, August 2016.

33. Kok, Y. Y., Z. Abbas, K. Khalid, and M. Z. Rahman, "Improved dielectric model for polyvinyl alcohol-water hydrogel at microwave frequencies," Am. J. Appl. Sci., Vol. 7, No. 2, 270-276, 2010.
doi:10.3844/ajassp.2010.270.276

34. Gevorgian, S., L. Linner, and E. L. Kollberg, "CAD models for shielded multilayered CPW," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 4, 772-779, 1995.
doi:10.1109/22.375223

35. Paul, D. R., "Water vapor sorption and diffusion in glassy polymers," Macromolecular Symposi, Vol. 138, No. 1, 13-20, WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim, Germany, March 1999.
doi:10.1002/masy.19991380104

36. Sengwa, R. J. and K. Kaur, "Dielectric dispersion studies of poly (vinyl alcohol) in aqueous solutions," Polym. Int., Vol. 49, No. 11, 1314-1320, 2000.
doi:10.1002/1097-0126(200011)49:11<1314::AID-PI479>3.0.CO;2-8

37. Lu, D., Y. Zheng, A. Penirschke, A. Wiens, and R. Jakoby, "Humidity dependent permittivity characterization of polyvinyl-alcohol film and its application in relative humidity RF sensor," 2014 44th European Microwave Conference, 163-166, Rome, Italy, October 2014.