Vol. 119
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-09-06
Design of a Metasurface Inspired Circularly Polarized Dual-Band Compact Antenna for Biomedical Applications
By
Progress In Electromagnetics Research M, Vol. 119, 1-12, 2023
Abstract
In this communication, a compact metasurface-based circularly polarized antenna with inverted L-shaped slots engraved in the ground is proposed for biomedical applications. The prospective antenna operates in the two frequency bands covering Medical Device Radio Service (Med Radio) and Industrial, Scientific, and Medicine (ISM) bands with center frequencies of 2.45 GHz and 4.1 GHz respectively. On mounting the prototype on the body, the impedance bandwidth of 14.4% and 42.5%, peak gain of 3.04 dB, and AR bandwidth of 0.3 GHz and 1.1 GHz in the two frequency bands (2.31-2.67 GHz and 3.28-5.04 GHz) are obtained respectively. For validating the prospective design, an antenna with the size of 0.264λ0 × 0.264λ0 × 0.014λ0 was fabricated on a Rogers RT/Duroid 6002 substrate and measurements were done in different scenarios. Link budget analysis of the device was also done for ensuring its communication ability.
Citation
Umhara Rasool, Javaid Ahmad Sheikh, Shazia Ashraf, and Gh. Jeelani Qureshi, "Design of a Metasurface Inspired Circularly Polarized Dual-Band Compact Antenna for Biomedical Applications," Progress In Electromagnetics Research M, Vol. 119, 1-12, 2023.
doi:10.2528/PIERM23060103
References

1. Zada, M., I. A. Shah, and H. Yoo, "Metamaterial-loaded compact high-gain dual-band circularly polarized implantable antenna system for multiple biomedical applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 1140-1144, Feb. 2020.
doi:10.1109/TAP.2019.2938573

2. Ramli, K. N., R. A. Abd-Alhameed, C. H. See, P. S. Excell, and J. M. Noras, "Hybrid computational scheme for antenna-human body interaction," Progress In Electromagnetics Research, Vol. 133, 117-136, 2012.

3. Kibret, B., A. K. Teshome, and D. Lai, "Human body as antenna and its effect on human body communications," Progress In Electromagnetics Research, Vol. 148, 193-207, 2014.
doi:10.2528/PIER14061207

4. Malik, N. A., P. Sant, T. Ajmal, and M. Ur-Rehman, "Implantable antennas for bio-medical applications," IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology, Vol. 5, No. 1, 84-96, 2021.
doi:10.1109/JERM.2020.3026588

5. Chaouche, Y. B., M. Nedil, I. B. Mabrouk, and O. M. Ramahi, "A wearable circularly polarized antenna backed by AMC reflector for WBAN communications," IEEE Access, Vol. 10, 12838-12852, 2022.
doi:10.1109/ACCESS.2022.3146386

6. Kaim, V., B. K. Kanaujia, S. Kumar, H. C. Choi, K. W. Kim, and K. Rambabu, "Ultra-miniature circularly polarized CPW-fed implantable antenna design and its validation for biotelemetry applications," Scientific Reports, Vol. 10, No. 1, 1-16, 2020.
doi:10.1038/s41598-020-63780-4

7. Chen, Y., X. Liu, Y. Fan, and H. Yang, "Wearable wideband circularly polarized array antenna for off-body applications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 5, 1051-1055, 2022.
doi:10.1109/LAWP.2022.3157367

8. Khan, U. R., J. A. Sheikh, A. Junaid, R. Amin, S. Ashraf, and S. Ahmed, "Design of a compact hybrid Moore's fractal inspired wearable antenna for IoT enabled bio-telemetry in diagnostic health monitoring system," IEEE Access, Vol. 10, 116129-116140, 2022.
doi:10.1109/ACCESS.2022.3219442

9. Yang, H. C., X. Y. Liu, Y. Fan, and M. M. Tentzeris, "Flexible circularly polarized antenna with axial ratio bandwidth enhancement for off-body communications," IET Microw. Antennas Propag., Vol. 15, 754-767, 2021.
doi:10.1049/mia2.12081

10. Iqbal, A., A. Smida, A. J. Alazemi, M. I. Waly, N. K. Mallat, and S. Kim, "Wideband circularly polarized MIMO antenna for high data wearable biotelemetric devices," IEEE Access, Vol. 8, 17935-17944, 2020.
doi:10.1109/ACCESS.2020.2967397

11. Chen, Y., X. Liu, Y. Fan, and H. Yang, "Wearable wideband circularly polarized array antenna for off-body applications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 5, 1051-1055, May 2022.
doi:10.1109/LAWP.2022.3157367

12. Le, T. T., Y.-D. Kim, and T. Y. Yun, "Wearable pattern-diversity dual-polarized button antenna for versatile on-/off-body communications," IEEE Access, Vol. 10, 98700-98711, 2022.
doi:10.1109/ACCESS.2022.3206799

13. Le, T. T., Y.-D. Kim, and T. Y. Yun, "A triple-band dual-open-ring high gain high-efficiency antenna for wearable applications," IEEE Access, Vol. 9, 118435-118442, 2021.
doi:10.1109/ACCESS.2021.3107605

14. Zhou, L., S. Fang, and X. Jia, "Dual-band and dual-polarised circular patch textile antenna for on-/off-body WBAN applications," IET Microw. Antennas Propag., Vol. 14, No. 7, 643-648, Jun. 2020.
doi:10.1049/iet-map.2019.1073

15. Yin, X., S. J. Chen, and C. Fumeaux, "Wearable dual-band dual polarization button antenna for WBAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 12, 2240-2244, Dec. 2020.
doi:10.1109/LAWP.2020.3028868

16. Zhang, X. Y., H. Wong, T. Mo, and Y. F. Cao, "Dual-band dual-mode button antenna for on-body and off-body communication," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 4, 933-941, Aug. 2017.
doi:10.1109/TBCAS.2017.2679048

17. Jiang, Z. H., M. D. Gregory, and D. H. Werner, "Design and experimental investigation of a compact circularly polarized integrated filtering antenna for wearable biotelemetric devices," IEEE Transactions on Biomedical Circuits and Systems, Vol. 10, No. 2, 328-338, Apr. 2016.
doi:10.1109/TBCAS.2015.2438551

18. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator [Education Column]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 202-211, Oct. 2013.
doi:10.1109/MAP.2013.6735515

19. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Letters, Vol. 58, 2016.
doi:10.1002/mop.29727

20. Mishra, N. and R. K. Chaudhary, "A compact wideband short-ended metamaterial antenna for wireless applications," Progress In Electromagnetics Research Letters, Vol. 66, 93-98, 2017.
doi:10.2528/PIERL17012503

21. Mishra, N. and R. K. Chaudhary, "A compact CPW fed CRR loaded four element metamaterial array antenna for wireless application," Progress In Electromagnetics Research, Vol. 159, 15-26, 2017.
doi:10.2528/PIER17021304

22. Mishra, N. and R. Chaudhary, "A miniaturized directive high gain metamaterial antenna using ELC ground for WiMAX application," International Journal of Electronics Letters, Vol. 7, 2018.

23. Kumar, S. and R. Kumari, "Composite right/left-handed ultra-wideband metamaterial antenna with improved gain," Microwave and Optical Technology Letters, Vol. 63, 2020.

24. Pimienta Del Valle, D. and R. Lagar-Perez, "Design of a dual-band PIFA for handset devices and it SAR evaluation," Ingenieria, Investigacion y Tecnologia, Vol. 17, 169-178, 2016.
doi:10.1016/j.riit.2016.06.002