Vol. 112
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-08-25
Dual-UWB Dielectric Resonator Antenna for OAM Communication
By
Progress In Electromagnetics Research Letters, Vol. 112, 49-58, 2023
Abstract
We designed a dielectric resonator antenna (DRA) that carries orbital angular momentum and has dual-band ultra-wideband characteristics based on the advantage of minor rain decay in L-band and C-band of microwave bands. The cavity of the antenna adopts an inner and outer nested spiral structure, and the material of resonant cavity shell is photosensitive resin. The internal medium is distilled water with a dielectric constant of 81, and the outer filling is saline with a concentration of 0.035 g/ml at room temperature for the dielectric constant. At the bottom of the cavity, we applied 2 feeds with phase difference of 90° to produce a circularly polarized beam in the DRA. Adjusting the size of the DRA and the height of the helical step surface to excite the OAM waves in higher order modes. The designed DRA generates resonance in 0.82-1.63 GHz and 3.35-7.27 GHz, and achieves ultra-wideband in both operating bands, furthermore, the antenna can generate OAM waves in l=±1 and l=±3 modes when operating at 1.51 GHz and 5.28 GHz, respectively. The simulation results match the measured results. The results show that the vortex wave generated by our designed antenna also has advantages such as high mode purity. Therefore, it can be effective in near-field communication and also provides a new solution for OAM near-field communication in 6G which is of great importance, and also for satellite communication and downlink signal transmission of communication satellites.
Citation
Zhe Wang, Haitao Nie, Shunshun Yue, Tailin Zhao, and Li Shi, "Dual-UWB Dielectric Resonator Antenna for OAM Communication," Progress In Electromagnetics Research Letters, Vol. 112, 49-58, 2023.
doi:10.2528/PIERL23052903
References

1. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review. A, Atomic, Molecular, and Optical Physics, Vol. 45, No. 11, 8185-8189, 1992 (in English).
doi:10.1103/PhysRevA.45.8185

2. Thide, B., et al., "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007 (in English).
doi:10.1103/PhysRevLett.99.087701

3. Wang, Y., X. Sun, and L. Liu, "A concentric array for generating multimode OAM waves," Journal of Communications and Information Networks, Vol. 7, No. 3, 324-332, 2022.
doi:10.23919/JCIN.2022.9906945

4. Tamburini, F., E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 3, 033001, 2012.
doi:10.1088/1367-2630/14/3/033001

5. Yu, Z., L. Shi, and Z. Xin, "Polarization conversion and OAM generation with a single transmitting metasurface," Progress In Electromagnetics Research M, Vol. 115, 129-140, 2023.
doi:10.2528/PIERM23012301

6. Deng, C. J., W. H. Chen, Z. J. Zhang, Y. Li, and Z. H. Feng, "Generation of OAM radio waves using circular vivaldi antenna array," International Journal of Antennas and Propagation, Vol. 2013, Art. No. 847859, 2013.

7. Liang, J. and S. Zhang, "Orbital Angular Momentum (OAM) generation by cylinder dielectric resonator antenna for future wireless communications," IEEE Access, Vol. 14, No. 8, 9570-9574, Aug. 2016.
doi:10.1109/ACCESS.2016.2636166

8. Ren, J. and K. W. Leung, "Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna," Applied Physics Letters, Vol. 112, No. 13, 131103, Mar. 2018.
doi:10.1063/1.5021951

9. Aayesha, M. B. Q., M. Afzaal, M. Shuaib Qureshi, and J. Gwak, "Ultra-wideband annular ring fed rectangular dielectric resonator antenna for millimeter wave 5G applications," Computers, Materials & Continua, Vol. 71, No. 1, 1331-1348, 2022.
doi:10.32604/cmc.2022.022041

10. Singh, R. P. and P. G. Poonacha, "Survey of techniques for achieving topological diversity," IEEE Communications, 1-5, 2013.

11. Jack, B., M. J. Padgett, and S. Franke-Arnold, "Angular diffraction," New Journal of Physics, Vol. 10, No. 10, 103013, 2008.
doi:10.1088/1367-2630/10/10/103013

12. Yu, Z., Q. Gao, B. He, and L. Guo, "Effects of concentration, temperature and geometry on double spiral liquid orbital angular momentum antenna," IEEE Antennas and Wireless Propagation Letters, 1-1, 2021.

13. Shen, F., J. Mu, K. Guo, S. Wang, and Z. Guo, "Generation of continuously variable-mode vortex electromagnetic waves with three-dimensional helical antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1091-1095, 2019.
doi:10.1109/LAWP.2019.2907931

14. Yang, Z., J. Zhou, L. Kang, B. Liu, G. Yang, and X. Shi, "A closed-loop cross-dipole antenna array for wideband OAM communication," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2492-2496, 2020.
doi:10.1109/LAWP.2020.3036929

15. Wu, J., Z. X. Zhang, X. G. Ren, Z. X. Huang, and X. L. Wu, "A broadband electronically mode-reconfigurable orbital angular momentum metasurface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1482-1486, 2019.
doi:10.1109/LAWP.2019.2920695